Bootlag

Volume 00, Number 0, Pages 000-000
S 1(XX)0000-0

TILINGS OF SIMPLEXES, SCHEMES OF GLUED GRAPHS AND
COMPACTIFICATION OF PGL™"'/PGL,

L. LAFFORGUE

©XXXX Bootlag



2 L. LAFFORGUE

Introduction

For all integers r > 2 and n > 1, we construct a projective compactification Q™"
of PGL"*! /PGL, which satisfies the following properties: it is equipped with an
action of PGL?H7 it is normal and even toroidal (more precisely, it has a smooth
morphism on the quotient stack of a certain toric variety A™" by its torus Ay™), it
is naturally stratified as disjoint union of locally closed subschemes ﬁgn indexed by
certain tilings S of simplex S™" of dimension n and of side r and which are smooth
and admitting a modular description.

There are several possible starting points.

One is the construction by De Concini and Procesi of compactification of (G x
G)/G for any adjoint semisimple group G (| ]). For this purpose, they take
representations V of G x G in which exists a line h whose stabilizer is G diagonally
embedded in G x G then the schematic closure in P(V') of the orbit of point h is
a equivariant projective compactification of (G x G)/G.

In our situation, we consider the representation of PGL:“H obtained in the fol-
lowing way: denote A" the affine space of dimension r, we make GL""* act on
(A")"*! and thus on A"(A™)"*! then, S™" denote the simplex

{Gioy--.yin) € N"T! g+ iy + - +ip =1},
we decompose A"(A")"*! into
@ AiOAT®~'~®Ai"AT
(20,---,in)EST™
and we see that PGL"*! act on
I[I Pa*aA"®---@A"A").
(iO ...,in)GST*”
If A" is diagonally embedded in A?*1 A"A" is identified with a line of A” A”*! whose
stabilizer in GL’TLJr1 is GL, diagonally embedded; in addition, A"A" is projected on
a line in each of the factors
A'LOAT®®AZnAT
of ATA™*! and the stabilizer of induced point in
H ]P’(AiOA" R--® AinAT)
(205eenyin )EST™
is PGL, diagonally embedded in PGL?H. Then the orbit of this point is identified
with PGL:‘H /PGL, and the equivariant compactification Q" is obtained from
the schematic closure of this one in
Il Pa*sA"®---@A"A")
(i(]’.”’in)esr,n,

by a few simple blow-ups (intended to separate the strata). When n = 1, Q" s
none other than the compactification of De Concini and Procesi of

(PGL, x PGL,)/PGL, .

Another starting point is the stratification of the Grassmannians into “thin Schu-
bert cells” (see for example | ). We introduce the Grassmannian Gr™™ of
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subspaces of dimension r in (A”)"*!; this is a closed subscheme of P(A"(A")"+1).
For any point F' of Gr”™" represented by a nonzero element u of
AT(AT)TL-‘FI _ @ AiOAT R ® AinAr
(i05.reyin ) ESTT

of which we denote u;,,.. ;, the components of it, the subset

S = {(io, - ,in) c s | WUig,... in 75 0}

is an entier convex polytope in the sense that there is a family of integers d; indexed
by subsets I of {0,...,n} satisfying

dy =0, dy 4=,

di +d5 <dj,;+ding, V1, J,
and
S ={(io,..,in) € S| Y ia > df, ¥V I}.
acl
And if Ey,...,E, denotes the n + 1 factors A" of E = (A")"*! and E;, I C

{0,...,n}, denotes -
D L.

acl

this family (d7) is given by d7 = dim(F N E;), V I. Thus, for such an entire convex
polyhedron S, the scheme Grig" of tuples in

G\ [ [ @ anaT) - {0)
(204ye+-yin)ES
which, completed by 0 in indices outside S, are in Gr"", classifies the subspaces F'
of E such that
dim(F N Ey)=dy, ¥ I.
When S describes(it seems to mean that S to be any element of this set) the set of
all entire convex polyhedrons of S™", Grg" constitute a stratification of Gr™".

We mark equally that any “boundary” S’ of an entire convex polyhedron S
defined by an equation of the form

Y o =df
ael

is an entier convex polytope and that the morphism of restriction to this “boundary”

(Wig,...in) (ioseonsin) €S 7 (Wig,.oiin) (o, onin ) €7
sends Grg" to Grg/" and represents
F— (FQE[)@F/(FQE]) QEI@E/E] =F.

In consequence, for any entire tiling (i.e. whose tiles are entire convex polyhe-
dron) S of simplex S™", we can glue schemes Grg" associated with tiles S of S of
along schemes Grg," associated with “boundaries” S’ shared by two tiles of S: no
introduce the closed subscheme Grg" of

(305---yin )EST™
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of tuples (us)sesrn» such that, for any tile S of S, the restraint tuple (us)ses is in
Grg". They classify the families (F) of subspaces of dimension 7 in E indexed by
tile S of S such that:

— for any tile S of S and any subset I of {0,...,n},
dim(Fs N Ey) = d7,
— for any tiles S, S’ of S having in common a “boundary” of equation
> ia=df =r—dj
acl
where J ={0,...,n} — 1,
FsﬂE[:FS//<FS/ﬂEJ), Fs/(FsﬂE[):FS/ NE;.
In particular, we show that if S is a “convex” entire tiling, the glued graph scheme
Grg" is smooth of dimension nr? thus independent of S.
We construct on the other hand a (normal) toric variety A™" of torus
Ay =G /G
whose orbits A" correspond exactly to convex entire tilings S of simplex S™", and

in such a way that an orbit Ag/" is contained in the closure of another Ag" if and

only if the tiling S’ refines the tiling S. Then we build a quasi—projectivg scheme
Q"™ equipped with an action of

GL" % G5 /G
and with a morphism
Qrm oy AT
Sr,n

equivariant under G;)," ; this morphism is smooth of relative dimension nr® and
its fiber above marked point ag of any orbit Ag" in A™™ is identified with glued

2

graph scheme Grig". Then Q™" is stratified by the preimage of Q5" of orbits AG"
in A™™ and each one identifies with

GEN(GS" x Grg™)

where G2, denotes the sub-torus of G5 stabilizer of the marked point s. Finally,
the compactification Q" of PGL"*! / PGL, is obtained as quotient of Q" by the
action of G5 /G,,, which is free; its strata Qrgn are the quotients of Q" by this

same action and they are also identified with the quotients (G /G, )\ Grg".
Let’s say again in this introduction that for any map
{0,...,p} = {0,...,n},
the induced morphism
PGL!"' /PGL, — PGL!*! /PGL,
is extended to a morphism
Q"o
The family of Q"", n > 1, equipped with these induced morphisms constitutes a

simplicial scheme which extends the simplicial classifying scheme of PGL, formed
of PGL"™! / PGL,..
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If the base field is finite with ¢ elements and therefore we have the Frobenius
endomorphisms 7 of elevation to the power ¢, the existence of morphisms
a2 anl
Do, P1,P2 :QT %QT
deduced from the three ascending injections
{07 1} _> {0’ 17 2}

allows to build a compactification of the Lang isogeny of PGL, i.e. an equivariant
. . . . T . . .
projective compactification 2’ of PGL, equipped with a morphism
ﬁr,‘r N ﬁr,l
which extends
PGL, — PGL,
g7(9) " og.

The scheme Q' is also toroidal (and even it has a smooth morphism on the quotient
toric stack of a certain normal toric variety .A™7 by its torus Ay"). In the category
of schemes equipped with a morphism on a toric stack,

@7 AT A
is defined as the kernel of the diagram

(@7 = A2/ A% ——=(@

7,1

— A" AT

and 077 = 0" is then induced by ps : Q"% 50" The scheme Q" is disjoint
union of locally closed subschemes ﬁgT indexed by certain convex entire tiling S of
triangle S™?2; these strata are smooth and admit a modular description.

The construction explained in this article is transportable to many other situ-
ations: here, we consider a space E with a graduation whose factors FEy, ..., E,
have the same dimension, but we could as well take factors of different dimensions
or a filtration instead of a graduation... We will explain in the next article how
such a variant allows us to construct compactifications of G"*1/G for G a para-
bolic subgroup of PGL, and then for G a transform of PGL, by Weil restriction of
scalars, with an immediate map to the compactification of the Lang isogeny on such
a transform; these compactifications are smooth over the quotient field of a certain
toric variety by its torus and they are disjoint unions of locally closed smooth and
modular strata. In particular, we obtain compactifications of the stacks of Drinfeld
shtuka with arbitrary level structures by forming simple fiber bundles. The partic-
ular case of level structures without multiplicities for which the compactification
of PGLE / PGL,. and its map to that of the Lang isogeny in PGL, was announced
in a note to the Proceedings of the Academy of Sciences (series I, volume 325,
pg 1309-1312,1997) and detailed in a preprint from Orsay. Note that Faltings also
mentions the quotients G"*! /G, for G a reductive group, in relation with the study
of singularities of local models (see| ][Concluding remarks]). Moreover, when
G is a classical group, it is not difficult to adapt our work to build compactifications
of G"*1/G satisfying always the same type of properties.

The present paper is organized as follows: The actual construction with its main
properties is given in Chapter 1 and the proofs related to the toric variety A™",
to the schemes of glued graphs Griy™ and to the global schemes Q™" and Q" are
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collected in Chapter 2, 3 and 4 respectively; the map to Lang’s isogeny is given in
the last Section 4.4.

Once again, I thank Gérard Laumon for his never-weary availability, whether
to listen to me, to encourage me, to ask me to be clearer or to guide me in the
mathematical literature.

I would also like to express my gratitude to Mrs. Bonnardel who, once again,
did the typing of the manuscript.
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Chapter 1

Definition, description and statement
of main properties

1.1 The scheme of convex entire tilings of simplex

In this first Section, we will construct a toric variety whose set of orbits is
naturally identified with the set of “entire convex tilings” of the simplex. First we
want to define these tilings.

Let » > 2 and n > 1 two integers.

Let

R™™ = {(.’Eo,...,l'n) GR”+1 |.’E0+(E1+—|—xn :’I"}
which is a real affine space of dimension n. It contains the lattice
75" = {(igy. .. in) €Z" Y |ig + iy 4+ +ip =71}
that we can call a lattice of integer points of R™". And let
S™ = {(io, - yin) € N"H! [ig +i1 4 +ip =1}
which is the set of integer points of simplex
S = {(xg,...,Tn) GRT‘l |zo+ 21+ -+ a0 =7}
in R™™,

In the real affine space R™™ of dimension n, we call a “convex polyhedron” to
be any convex subset generated by a finite number of points. We can define the
dimension of such a polyhedron as well as its faces which are also convex polyhe-
dra and in particular its boundaries i.e. its faces of codimension 1. We also call
“(convez) tiles” to be those convex polyhedra which are of maximal dimension n.

Finally, a “tiling” of a certain tile is a writing of this tile as a union of smaller tiles
whose interiors do not meet.

U

Definition 1.1. A convex polyhedron S of the space R™™ will be said to be “entire’
(i.e. matroid) if it is of the form

S = {(zo,...,x,) € R*| Z Zo =1 and Zxa >d, ¥V I}
0<a<n acl
for (d;) a family of integers of Z indexed by the subsets I of {0,...,n} which is
convex in the sense that
dg =0, dgo,..ny =7, di +dj < drng +diug, VI, J.

Note that the term entire convex polyhedron has for us a more restrictive mean-
ing than usually. We will demonstrate:

Lemma 1.2. (i) If S is a entire convex polyhedron defined by a convex fam-
ily of integers (dy) as in the definition 1.1, we have for any subset I C

{0,...,n}
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so that the family (dr) is uniquely determined by S.

(ii) The faces of an entire convex polyhedron are also entire convex polyhedra.

(iii) Any entire convex polyhedron is generated by its integer points so that it
can be identified with the finite subset of these.

(iv) If we call “generating family” to be any family of n+ 1 integer points that
generates the lattice of integer points, any entire tile contains at least one
“generating family”.

(v) A tile which admits a tiling constituted of entire tiles is itself entire.

Of course, we will call an “entire tiling” of an entire tile to be a tiling of the tile
which all the tiles are themselves entire.

In the real vector space of finite dimension of functions S™" — R, let C™"™ be the
cone of functions v : S — R such that for any affine map [ : ™" — R satisfying
I < w, the set

{s € $™™ | U(s) = v(s)}
is an entire convex polyhedron.

And if S is an entire tiling of S™", let Cg" be the convex cone of functions
v: S™" — R such that for any tile S of S there exists an affine map lg : S — R
satisfying g < v and

S={seS""|ls(s) =v(s)}.

Those of the entire tilings S of S™" for which Cg" is not empty will be called
the “convex entire tilings” of S™". We remark that if () denotes the trivial tiling of
S™™, then Cy™ is the subspace of affine functions S™" — R.

We will prove:

Proposition 1.3. (i) The cone C™™ is the disjoint union of convex cones Cg"
with S describing the set of convex entire tilings of S™™. B
(ii) For any S, the closure Cg" of C™™ is the disjoint union of Cg/" with S’
describing the set of convex entire tilings of S™" more coarse than S.
In addition, Cg" is a rational polyhedral convex cone (i.e. generated by

a finite number of its elements taking their values in Z) and faces of Cg"
are Cg/" with S" more coarse than S.

(iii) For S and S' two convex entire tilings of ST, the set of convex entire tilings
of S™™ more coarse than both S and S’ has a smallest element SV S'. And
the intersection of Cg" and Cg" is equal to Cg\)g, .

Let us note that in their study of Gelfand discriminants, Kapranov and Zelevin-
sky were also led to introduce certain cones of piecewise affine convex functions on
polyhedra, with the associated polyhedral decompositions (see [ |[Section 1])

According to Proposition 1.3, the rational polyhedral convex cones Cg"/Cy™
form a fan in the quotient of the space of functions S™™ — R by the subspaces of
affine functions. The general theory of toric variety such as shown in [
associates to this fan a normal toric variety A™" of torus Ay"™ = Gy, /GH! where

the torus Gt is embedded in the torus G5 by

Aoy s An) = (AoAT™ A gin ) €S -

The orbits in A™" are locally closed subschemes indexed naturally by the convex
entire tilings S of S™"; we denote Ag. Each has a marked point «g. The closure of
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an orbit Ag is the union of Ag for S’ refining S, and union of Ag for S’ coarser
than S is the smallest invariant open subset containing Ag.

We can therefore call A™™ the “scheme of convex entire tilings” of S™™. When
n = 1, the convex entire tilings of S™! are the partitions of the interval {0,...,r}
and the toric variety A"™! of torus GI,F1 /G2, = G'! is identified with the affine
space A"! of dimension 7 — 1. When n = 2, the convex entire tiling of S™?
constitutes of minimal equilateral triangles is finer than all the others so that the
scheme A™? is affine; it is smooth if » = 2 but it is not smooth if » > 3. When
n > 3 finally, there are more than one minimal convex entire tilings of S™™ and the
scheme A™" is not affine; it is smooth if » = 2 but it is not smooth if r > 3.

1.2 Construction by schematic closure

Let’s make the product GL:‘H of n 4+ 1 copies of linear group GL, of rank r act
on the sum (A”)"*! of n+ 1 copies of vector spaces A” of dimension r and thus also
on the exterior power A"(A™)"*1. If A" is diagonally embedded in (A7)"*! ATA"
is identified with a line of A”(A")"*! whose stabilizer in GL"*! is none other than
GL, diagonally embedded. This determines a locally closed immersion

GL!™' / GL, < P(A"(A")"t).
Its image has a closure the Grassmannian Gr™" classifying the subspaces of di-
mension 7 in (A7)"*!; it is identified with the open subset of subspaces whose
projections on each of n + 1 factors A" is isomorphism.

If we write the decomposition

Ar(Ar)nJrl _ @ A’iQAT R ® Ai”AT
(1050ryin)ESTM
where
8™ = {(ig,...,in) € NI g+ +i, =71},
this image is also the open subset of subspaces of which none of the components in
the factors ‘ ‘
APA"® - @ ATAT
vanish. So we have a morphism
GL"™' /GL, — II P@a°A"®---@A"A")
(1050eeyin) €S
which is factorized through a locally closed immersion
PGL' /PGL, — [ PA"A"®---®A"A").
(8050eyin) ST
Embed GL, xGZ! in GL'™ <GS by
(G5 A0, -5 An) = (g; At -5 Ang; (Mo(det g) TIATE “'Aﬁi")(ioymmesr,n),
this immersion also appears as the quotient by the torus G;?l /Gy, of the locally
closed immersion
(GLP' <G5 ") /(GLy xG) <= G\ ] [(Aiw @ ®@AA") — {0}}
(60 ye-esin ) EST™

(90,290 M) = (N, - AP (o) VooV A ('g)

(0,0 ryin ) EST™
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where
Nigreoin - N0 ("g0) V-V A (*gy,)
are homomorphisms
APA" @ @ AMAT — ADAT A AATAT = ATAT = Al
identified with elements of A®A” ® --- ® A A" by means of the canonical base of
. bn the other hand, we have the composite morphism

(GL xGyy ") /(GLy xGH) =GR G = AG™ = AT

with values in the scheme A™" of convex entire tilings of simplex S™".
By making the product, we obtain a locally closed immersion

(GL:«LJrl XGS{’n)/(GLr XGnm+1) — Gm\ H |:(AiOA7‘®. . .®AinAr)_{0} DA™
(505---yin ) EST™
We can now ask:
Definition 1.4. Let Q™" be the schematic closure of the image an of
(GL;LH XGEJW)/(GLT )
in
G\ 11 [(AioAr 9 @ AmAT) - {0}] @ A,
(10, in ) EST™

And let Q" be the quotient scheme of Q™" by the (free) action of torus G5 " /G,,.

Of course, Q™" is a torsor on ' for the torus G5 /G,,. And on the other
hand, " contains as open dense subset the quotient ﬁgn ~ PGL""' /PGL, of
Q" by the free of action of torus G, /Gy,.

We will demonstrate:
Theorem 1.5. The morphism
=G\ [ [(AeAT e @ AAT) - {0}

(0,+eeyin ) EST™
and its quotient by the free actions of torus Ggwn/Gm

ﬁ"‘vn — Gm\ H P(A'LOAT R ® A,L'”AT)
(105...yin )EST

are projective.
In consequence, Q" realizes a projective compactification of PGL?'|r1 / PGL,..

When n = 1, the compactification Q"' of PGL? / PGL, is a particular case of
the compactification of (G x G)/G constructed by De Concini and Procesi for any
adjoint semisimple group G. On the other hand, Q™! is classically known as the
scheme for “complete homomorphisms” (see for example | ])- We can therefore
call Q™™ the scheme of ‘“n-complete homomorphisms of rank r”.

If p > 1 is an integer, any map ¢ : {0,...,p} — {0,...,n} induces naturally an
affine map of

S™P = {(igy...,in) € NT g 4o iy, =71}
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by
(J8)o<p<p = (ia = Z 38) 0<asn’
B=a
it is an identification to a face when ¢ is injective and a projection when ¢ is surjec-
tive. For any entire tiling S of S™™, the functions S™"™ — R which are in the convex
cone Cg" induce on S™? functions which are in the convex cone Cg/ associated to

entire ;iling S’ of 8™ induced by S. Thus ¢ induces an equivarianE morphism
AT — ATP,

On the other hand, for each
(J)o<p<p € SF

and

(Z.a = Z jﬁ)OSagn e smn
v(B)=a
its image, we have a surjective homomorphism

Q) APAT— (K AAT
0<B<p 0<a<n
and by duality an injective homomorphism
Q) A=A (X) AFAT
0<a<n 0<B<p
so that ¢ induces a morphism
TN | | {(AiOAT © @ AAT) — {0}}
(10,.-sin ) EST™
56\ I [(eATe- @ AbAn) - {0}].
(0,...,ip)ESTP

And we verify immediately that the product morphism sends Q" to Q” via the
obvious morphism

1 (GLPT xGS7") /(GL, xGFY) — (GLPH xG™") /(GL, xGEHY)

and hence induces a morphism ¢* : Q™" — Q"P which is included in the commuta-
tive diagram:

(GLI xGH") /(GLy x G Qrn A Gy, " /Gt
(GLET! xG5,™") /(GLy xGh)C Qrp Arp °GS, " /Ghr!

An]cjl ass * 1 Q™" — Q7P is equivariant, it induces finally a morphism ¢* : Q" —
The family of Q™™ [resp. of ﬁr’n], n > 1, with all these induced morphisms is a
simplicial scheme that extends the one of (GL*™' xG5"")/(GL, xG7+1) [resp. of
PGL"*! /PGL, which is none other than the classifier of PGL,].
For n > 2 and p = 1, let us describe to iota the set of n + 1 injections {0,1} —
{0,...,n} given by
0—0,1,....n—1,n
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and
1—1,2,...,n, 0.
Then the induced morphism

T,n

Q" o @t
sends PGL""! /PGL, to (PGL? / PGL,)"t! = PGL""! in such a way that identi-
fies with
{(90,---,9n) | gog1 -+~ gn =1}

Thus, Q" realizes a compactification of morphism of multiplication of n elements
of PGL,..

1.3 Smoothness and modular descriptions

We will prove:

Theorem 1.6. (i) The morphism Q"™ — A™"  which is equivariant under the
action of torus anr’n/((}m, is surjective and smooth of relative dimension

2

nr

(i) If v : {0,...,p} — {0,...,n} is an injective map, the induced morphism
me = QPP X grp A", which is equivariant under the action of torus
GS"" /G, is smooth of relative dimension (n — p)r?.

As the morphism Q™" — A™" is equivariant, we see that, for any convex entire
tiling S of S™", the preimage Q¢" in Q™" of the orbit Ag in A™" is canonically
isomorphic to G\ (G5 x Gg") where G§" denotes the fiber of Q™" above marked
point ag of Ag and G5, the sub-torus of G, stabilizer of this point.

Of course, QJ" constitutes a stratification of Q™" as disjoint union of smooth
locally closed subschemes. And the closure of each stratum Qg¢" is the union of
Q3" on the set of convex entire tilings S’ refining S.

Likewise, the quotients ﬁ;n of Qg™ by the free action of torus G5 /G,y consti-
tutes a stratification of Q" as disjoint union of smooth locally closed subschemes.

Finally, we want to describe in modular terms the fibers Grg"™ of Q™" above
marked points ag of A™". For this purpose, let’s denote Ey,...,E, the n + 1
factors A" of (A")"*! = F and, for any subset I of {0,...,n}, E; = ®acrFq.

We will start with the following lemma;:

Lemma 1.7. Let F be a subspace of dimension r of E = (A")"*! defined on a field
and represented by a nonzero tuple (w;,, . ;,) in
ATATT = P APATR- @ ATAT
(i0seenrin)EST™

Then the family of integers dy = dim(F'NEy) is convez in the sense of Definition
1.1 and the subset of S™™

{(io, e ,in) ‘ uio,_“% 7é 0}

is none other than the entire convexr polyhedron

{Gios- - vin) | Y ia >dr, ¥V T}

acl



INVENTION 13

If then S is a entire convex polyhedron of S™" defined by a convex family of inte-
gers d; > 0, we are led to introduce the scheme Grg’" of tuples (uioy___ﬂ-n)(io,m%)esr,n
in

Gn\ ] [(Aiw ® - ®ARAT) — {o}]
(30, i )ESTT

which, completed by 0 at indexes of S™" — S, is in the Grassmannian Gr"™". This
is a locally closed subscheme of Gr”™™ and according to Lemma 1.7, it classifies the
subspaces F of dimension r in E = (A")"*! such that dim(F N E;) =d7, ¥V I. In
addition, when S runs through the finite set of entire convex polyhedron of S™™,
Grg" constitutes a stratification of Gr™". These strata of the Grassmannian are
variants of those studied in the mathematical literature under the name of “thin
Schubert cells” (see for example | D.

Let us also state:

Lemma 1.8. For S be a entire convex polyhedron of S™" and S’ a face of S, the
restriction (us)ses — (us)ses induces a morphism of Grg™ to Grg,. When S’ is
defined in S by an equation of the form

o =d; with dy = i o b
Sia=dr with di @D,f?if})es{zl}

acl acl

and in particular when S’ is a boundary of S, this morphism associates with sub-
spaces F of E which are in Grg" the subspaces

(FNEN®F/(FNE;) CE®FE/E;=FE.

We will give fibers Grg" the following modular description:

Theorem 1.9. For any convex entire tiling S of S™", the fiber Grg", which is

smooth of dimension nr?, is the closed subscheme of
G\ I [AeaTe- @A) - {0}
(i()r“vin)esr’n
of tuples (Wi,....i, ) (io,....in)esmn Such that, for any tile S of S, the restraint tuple
(Wig,....i) (io,....in)es are in Grg™.

It classifies the families (Fs) of subspaces of dimension v in E indexed by tiles
S of S such that:

— for any tile S of S and any subset I of {0,...,n},

dim(Fs N Ef) = i '
m(FsNEp) =  min { Zza},
acl
— for any tiles S, S" of S having in common a boundary with equation

> g =d;

acl

dr = min lo p = max io
1= Sef =m0

ael acl
and if J=1{0,...,n} — 1,
FsNE;=Fs /(Fs:NE;), Fs/(FsNE;)=Fs NE;.

where
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Chapter 2

entire convex polyhedrons and con-
vex entire tilings

We will give here the demonstrations of the results that are used for the con-
struction of Section 1.1.

2.1 An equivalent definition of entire convex polyhedrons

Let’s start with the following lemma:

Lemma 2.1. Let (d;) be a family of integers indexed by subsets of {0,...,n} and
convex, with hence

dg =0, dio,...ny =7, dr +dj < djny +drus, VI, J.
And let
S = {(zg,...,2,) € R"!| Z To =7 and Zaja >dy, ¥ I}
0<a<n acl

be the associated entire convex polyhedron.
Then, if (zo,...,2y) s a point of S and I, J two subsets of {0,...,n} such that

Z$a=d1 and Zma:dJ,

acl acJ
we have
dr +dj=dms+drus

Z To =drnyg, Z ZTo =duyg.

acInJ acluJ

and

Proof. To see this, it is enough to combine the two equalities of the hypothesis with

the inequalities
Y za>dins, Y Ta>ding,
acluJ aclnJg

dr +djy <drng+drug
and with the equality
D Tat ) Ta= D Tat D Ta
a€el acJ aclnd acelUJ
O

This lemma allows us to prove the necessity of the condition given by the fol-
lowing proposition:

Proposition 2.2. A convex polyhedron S of the space is entire if and only if for
any sequence

S=51, Sip+1, ---», n
constituted of convex polyhedra Si, lg < I < n, of codimension l, each of which
is a boundary of the previous one, there exists a permutation 7 of {0,...,n}, a
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permutation o of {0,...,n} and integers dy,...,d, € Z such that, for anyl, ly <
I < n, barycentric coordinates xy,...,x, of points of S; satisfying the equations:

Tr(o(1)) T Tr(o(1)+1) T+ Trn) = di,
Tr(0(2)) T Tr(o(2)+1) T+ Trn) = da,

Tro)) t e+ T Ty = di-

Proof. Let’s start by proving the necessity of this condition.
Given that

S =51, Sig41s ---5 On
be a sequence as in the statement, we can find a sequence
Iy,.... I,

of subsets of {0,...,n} such that the affine subspace generated by each S;, lp <1 <
n, is defined by the system of equations

Z To=dr,, 1<m<L

a€ly,
And according to Lemma 2.1, we can suppose that for any m, m’ we have

I, C Ly or Iy DIy or Iy NI =0 or I, UL, ={0,...,n}.

Even if you replace I, by {0,...,n} — I, for certain m, 1 < m < n, we see that
the subspaces generated by S;, lp < I < n, are defined by systems of equations of
the form

Zxa:dm, 1<m<lI,

a€Jm

where Jp, ..., J, is a sequence of subsets of {0,...,n} such that for any m, m’ we
have J,,, C J, or Jp,» C J,, and d,, are integers. This is the form requested in the
condition of the statement.

As for the converse, we will show it at the same time with the following lemma:

Lemma 2.3. Let S be a convex polyhedron of the form
S ={(xg,...,z,) € R" | Z To =1 and Zxa >dy, ¥ I}

0<a<n acl
where, for any subset I,
dr = min To p-
Then S is entire if and only if d; are elements of Z and for any subsets
L2L2L2- 21,

three exists a point (g, ...,xn) of S which realizes simultaneously the minimums

of
S e St

a€cly acls acl)
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Proof of Lemma 2.3 and finally of Proposition 2.2. Let us first show that if the
condition of Lemma 2.3 is satisfied, S is entire. It suffices to show that for any
subsets I, J of {0,...,n}, we have

dr +dy <dins+dru.
Now there is by hypothesis a point (zg,...,z,) of S such that

> wa=dins, Y Ta=di, Y za=dy.

aclnd ael aclUJ
We deduce as desired

dy < Z ZTo = drug + ding — dy.
aeJ

It is obvious on the other hand that if a convex polyhedron S satisfies the con-
dition of Proposition 2.2, it has the form of Lemma 2.3 and

dr = min T
I (o,...,zn)ES { Z a}

acl

are integers. It only remains for us to prove that then also and for all subsets

L 2L 2---21,

E Lo E Loy +o-y E Lo

acly acls acl

minimums of

are realized simultaneously on S.

Let us proceed by recurrence on n, assuming the result already satisfied when
the space is of dimension < n.

Let us first consider the case where S is of dimension < n. As by hypothesis §
satisfies the condition of Proposition 2.2, there exists then a non trivial partition

KO- -1IKy

of {0,...,n} and integers 71, ..., 7 of sum 1 +--- 4+ 1, = r such that the subspace
generated by S is defined by equations

E Lo = T1, E Lo = T2, «--, E Lo = Tk,
acKy acK> acKy

and S is of the form S; X --- x S where S1,..., Sk are entire tiles in the spaces

{(xa)aeKl | Zxa :Tl}w'w{(xa)aGKk | Zxa :'rk}~
In consequence, we can write, for 1 <[’ <1,
min{Zwa}: min { Z xa}—i—---—k min { Z xa}.
(@a)es \ ST, @€ ek, @€ \ pel Nk,

The result for S can be deduced from the one already known for S, ..., Sk according
to the hypothesis of recurrence.

It remains to treat the case where S is of dimension n i.e. is a tile.

let’s first assume that the equation

Z T :dll

acl



INVENTION 17

(where dy, = ming, es { Y wcl, ma}) defines a boundary of S. This one also

satisfies the condition of Proposition 2.2 and it is of the form S’ x S” where S’ and
S are two entire tiles in the spaces

{(za)aeh | Zma = dll}
and
{(xa)ag‘éll | Zxa =Tr—- dh};

more precisely, it is defined in this hyperplane by a certain number of inequalities

of the form
Z Lo > dK

aEK
where subsets K must satisfy

KCILor KOIor KNI =0 or KuUlLb ={0,...,n}.

The tile S’ is defined by those inequalities that correspond to subsets K such that
KCIor KUl ={0,...,n}. They are of the form

ZvadK or Z To > dp, +dxg — 7

acK aclNK
and in both cases they are already satisfied on the tile S in a whole. We deduce that
the minima on S of Zaelll Tq, 2 < I <1, are realized on S’ x S” simultaneously
according to the result proved for S’ x S”.
Let’s consider the last case where the equation

> =y
acly
defines in S a face of codimension k > 2. This face is of the form

So®S®---® Sk

where Sy, ..., S are tiles in the spaces

{(:COL)OLGKO | Zxa = 7”0}, ceey {(xa)aéKk | Zxa - rk}

with

KoK II--- I Ky
a partition of {0,...,n} and rq,...,r; integers of sum rg +71 + - -+ 7, =7r. In
addition, I; is compatible with this partition in the sense that if we renumber we
have

L=KIOK;II---1I Kys
for certain k' < k.
The face

So®S51®--® Sk

is the intersection of boundaries of S that contains; this is defined by equations of

the form
> oo~ d
aeK

where K is a union of certain K,, and

dK: Z Tm-

KnCK
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And for any m < &/, we can choose among K which appear at least one K/, such
that K, C K/ ; denote B, the boundary of S that corresponds to it.
For 2 < I’ < I, we have certainly

min { E xa} > min { E xa} > E min { E xa}.
o) €S0 X -+ X S s 'w)ES
(@a)€Sox--xSk { o7, (wa)es L 7T, o<mer @IS L e Ak

However, according to the already known result for boundaries of S and the hy-
pothesis of recurrence, we have for any m < k/,

min { E xa} = min { E xa} = min { Z :ca}.
_ 2a)EB -
(@a)es aclyNK,, (®a)€Bom aclyNKy, () €S0 xS aclynKm,
As I C I, we have
min { g xa} = E min { Z xa}.
(Ta)€S0 XX Sk a€cly 0<m<k’ (a)€S0x---x Sk aclynKm

We conclude according to the result already known for Sy x - - - x Sj.
This finishes the proofs.

2.2 The properties of entire convex polyhedrons

We give here the proof of Lemma 1.2 of Section 1.1.
(i) Let then (dr) be a family of integers indexed by subsets I of {0,...,n} and
convex in the sense that

dg =0, dgo,..ny =7, di +dj < drng+drus, VI, J.

We want to show by recurrence on the dimension n of the space that the asso-
ciated convex polyhedron

S = {(xo,...,x,) € R"T| Z 2o =1 and Zxazdf, v I}
0<a<n acl

satisfying

dr = min {Zma},VI,

(@o on)€ acl

and in particular is not empty. This is obvious when n = 1. Suppose then that
n > 2 and that this result is already verified of dimension < n.

If I is a non trivial subset of {0,...,n} and J its complementary, it results from
Lemma 2.1 of Section 2.1 that the intersection of S with the hyperplane

{(x0,...,7,) € R*™| Zxa =dr}
ael

is of the form S’ x §” where S’ and S” are two convex polyhedra in the spaces
{(za)aer | Zxa =dr} and {(za)acy | Zia =r—dr}
defined respectively by the inequalities

Y zdg, VKCI
aeK
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and

> @a>duk —dr, VK C .

acEK
Now the two families of integers (dx)xcr and (drux —dr)kcs are convex. Accord-
ing to the hypothesis of recurrence S’ and S are nonempty and thus

dr = min Ty
I (0., xn)ES { Z }

acl

as we wanted.

(ii) That the faces of an entire convex polyhedron are still entire convex polyhedra
follows immediately from their characterization given by Proposition 2.2 of Section
2.1.

(i) The assertion (i) says in particular that the vertices of an entire convex
polytope are integer points. As any convex polyhedron is generated by its vertices,
we see that an entire convex polytope is generated by its integer points.

(iv) We want to prove that in any entire tile S of the space of dimension n, we
can choose n + 1 points which generated the the complete lattice of the integer
points.

Let’s choose any sequence

S =25, S1, ..., Sn

of faces S;, 0 <[ < n, of S of codimension [ each of which is a boundary of the pre-
vious one. According to Proposition 2.2 of Section 2.1, there exists a permutation
7 of {0,...,n} and a permutation o of {0,...,n} such that, for any [, 1 <1 < n,
and denoting s,, the unique point of S,,, points s of S; satisfies the equations with
the barycentric coordinates:

(@r(o(1) + Zr(o)+1) + o+ &rw) ) (8 = 50) =0,
(Tr(o(2) T Tr(o@)+1) T+ Tr(m)) (s — $n) =0

(Tr (o) + Tr(e@+1) T+ Trn)) (5 — 8n) = 0.
For any [, 1 < <n, we can choose in S;_1 an integer point s;_; such that
(Tr(o)) + Tr(e@+1) T+ Trn))(S1-1 — 8n) = £1L.
Indeed, there is certainly in S;_; a sequence of faces
Sl—lzsll—lv Sllv LR 7,7,—17 STI’L:S”

each of which is a boundary of the previous one and such that each S}, NS}, | <
I < n, is of codimension I’ + 1. According to Proposition 2.2 of Section 2.1, S/,
has a (unique) point s;_; satisfying the above equation.

The family sg, ..., s, answers the question asked. In fact, the matrix

(ﬂf-r(g(l)) + Zro)+1) + o0+ ‘TT(YL))(SZ/—I —sn), 1<, ' <n,
has its integer coefficients, zero above the diagonal and equal to £+ on the diagonal.

(v) Let S be a tile of the space of dimension n which admits a tiling constituted
of a finite set {5’} of tiles. We remark that if

S =50, S1, ..., Sn
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is a sequence of faces of S each of which is a boundary of the previous one, then
among the tiles S’ of tiling, there is one for which the sequence

S'=58nNSy, NSy, ..., NS,

is constituted of faces of S’ each of which is a boundary of the previous one.

It is thus resulted from Proposition 2.2 of Section 2.1 that if the elements of
tiling {S’} of S are entire, S is also entire.

This finishes the proof of Lemma 1.2 of Section 1.1.

2.3 The properties of cones of convex functions on the sim-
plex

We give here the demonstration of Proposition 1.3 of Section 1.1.

(i) According to Lemma 1.2(ii) of Section 1.1, the faces of any entire tile of S™"
are entire convex polyhedra. From this it follows immediately that all convex cones
CEr,n are contained in the cone C™".

~ Conversely, consider v : S™™ — R a function which is in the cone C™".
For any subset S of S™", denote S the convex polyhedron of

R™"™ = {(xg,...,2n) ER"™ | 2o+ - + 2z, =71}

that it generates, and for any affine map [ : S — R, denote [ : S™" — R the
unique affine map which extends it.

Let’s have [ describe the set {i} of affine maps S™" — R satisfying [ < v. Then
U = Sup;c {l}{Z} is a convex application S™" — R which is written as the upper
bound of a finite set of affine maps and which satisfies T(s) < v(s), ¥V s € S™"™.
There exists a unique tiling X of S™™ such that at any tile X of X is attached an
affine map lx : S™" — R satisfying [x < v and

X={zxe S |lx(z)=9(z)}
In addition, any such tile X is generated as convex polyhedron by its finite subset
S={seS""|ix(s) =v(s)}.

But since the function v is by hypothesis in the cone C™", we see that S is an entire
tile of S™™ and X = S.
Then the set of these entire tiles S constitutes the unique entire tiling S of S™"

such that the convex cone Cg" contains v.

(ii) For any convex entire tiling S of S™", the closure Cg" of convex cone Cg" is
the set of functions v : S™™ — R such that for any tile S of S there exists an affine
map lg : S”" — R satisfying [g < v and

SC{se 8" |lg(s) =v(s)}.
For v a such function and S a tile of S, the set
{s €5™" | 1s(s) = v(s)}
is the trace of a tile of S™™ which is a union of tiles of S; according to Lemma
1.2(v) of Section 1.1, this is an entire tile. This proves that Cg" is the (disjoint)

,n

union of Cg" with S’ describing the set of entire tilings coarser than S.

In order to show that Cg" is a rational polyhedral convex cone, it suffice to see
that it is defined by a finite number of equations and of linear inequalities with
coefficients in Z. For this, let’s choose in each tile S of S a generating family
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805 - - -, 8, (it exists according to Lemma 1.2(iv) of Section 1.1). Any point s of S™"
is written in a unique way as the barycenter of sq,..., s, with integer coefficients
Jos- -+, Jn of total weight jo + j1 + -+ j, = 1. Then the cone Cg" is defined in
the space of functions v : ™™ — R by the finite set of equations and inequalities
of the form

U(s) = jO'U(SO) + jlv(sl) et ]nv(sn)
if s is in the same tile S as sq,..., s, and
v(s) = jov(so) + j1v(s1) + -+ + Jnv(sn)

in the general case.

As Cg" is the disjoint union of Cg* with ulS” more coarse than S, it is obvious

now that the faces of Cg’" are Cg’,n.

(iii) Consider than S and S’ two convex entire tilings of S™" and S;,...,S,
the finite family of convex entire tilings more coarse than both S and S’. The
intersection SV S’ of these is a tiling of S™™ whose tiles are union of tiles of S or
also of S’. Again according to Lemma 1.2(v) of Section 1.1, these tiles are integers
and SV .S’ is an entire tiling of S™". Finally, if we choose functions vy, ..., vy in the
convex cones Cg’ln, . Cg’:, the function vy + - - 4 v is in the convex cone Cgq

which thus is not empty and SV S’ is a convex entire tiling as we wanted.
This finishes the proof of Proposition 1.3 of Section 1.1.
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Chapter 3

Stratification of the Grassmannian
and schemes of glued graphs

3.1 The entire convex polyhedron attached to a graph. The
restrictions to boundaries

We demonstrate here the results needed to define and interpret in modular terms

the strata Grg" of the Grassmannian Gr™" associated to entire convex polyhedra

S of S™™ as well as morphisms Grg" — Gry," of restriction to boundaries.

Proof of Lemma 1.7 of Section 1.3. Let then F be a subspace of dimension r of
(A"l = E = FEy® - ® E,. For any subset I of {0,...,n}, we denote d the
dimension of the intersection of F' with
Er = P E..
acl

Of course, we have dy = 0, dyo, ..,y = r and for all subsets I, J, the subspaces
FNErand FN Ej are contained in F'N Eryy and have for intersection F'N Erny
so that

dr+djy—ding < dpug.

Thus, the family (dy) is convex.
If w = (u4q,...4,) is a direction vector of the line that represents F' in the space

NE= P A°E®@---@A"E,,
(305---yin )ESTT

we need to show that a tuple (i, ...,4,) € S™" satisfying wu;, . ;, # 0 if and only

if
> ia = dp, VI
acl
Now, for any subset I of {0,...,n}, we have a canonical isomorphism

AP =AY (FNE) @AY (F/FNE),
from which it results
d] = min { Z’La | Wi, ... ip 75 0}
acl

It suffices thus to prove that if (jo,...,jn) is a tuple of S™™ such that u;, . ;. =0,
there exists a subset I of {0,...,n} such that

Zio‘ = Z‘]a = Ujy,...jn = 0.

acl acl

Let us choose r basis vectors of F'. By decomposing them into a base of E union
of bases of Ey,..., E,, we obtain n + 1 sets of r line vectors I{,...,I*, 0 < a < n,

1V

which are of r-tuples of scalars. By hypothesis, each time you choose jy vectors
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among 19,...,19, j1 vectors among [1,...,IL, ..., j, vectors among I7,... 1", the
determinant of the matrix thus formed is 0.

Choose n + 1 integers jg,. .., j, satisfying 0 < j{ < jo, 0 < 51 < j1, ..., 0 <
ji < jn, not all null, such that each time we take j) vectors among [9,...,1%, 5]
vectors among [3,...,lL ..., j! vectors among I},...,I", the space generated by
these j{ + ji + - -+ + 71, vectors is of dimension < j§ + ji + -+ + 75, — 1, and which
are minimal for this property. In other words, for all integers ky, ..., k, satisfying
0<ko<jp 0< ks <ji, ., 0< by < iy and ko +ky +- -+ k= jojy+- -+, — 1,
it is possible to choose ko vectors among 19, ...,1%, ki vectors among I3, ...,IL, ...,

)Y )i

ky, vectors among [T, ..., [, such that the space generated by these ko+k1+---+k,

)iy

vectors is of dimension kg + k1 + - - - + k,. It is then easy to satisfy that the space

generated by such vectors is independent of the choice of ko, ..., k&, and of these
vectors.
This means that if I denotes the nonempty subset of {0,...,n} composed of «

such that j/, > 1, then the space generated by all vectors I{,...,l¢, « € I, is of
dimension jj + j1 + -+ j., — L.

In consequence, we have for any tuple (g, ...,4,) of S™" the implication
D ia =Y ja =ty i, =0
ael ael
and all the more so
Dia =D o=ty i, =0.
ael acl
That’s what we wanted. O

Proof of Lemma 1.8 of Section 1.3. Let then S be a entire convex polyhedron of
S™™ and S’ a face of S which is defined in S by an equation of the form

S in=d; with d;= min {Z’a}
acl (i0,-in)€S  £=7

This is particularly the case if S’ is a boundary of S.
All subspaces F' of E which are in Grg" have with E; an intersection of fixed
dimension d;. We therefore have on Grg" of a well-defined morphism

F— (FNE)&F/(FNE)CE &E/E =E.

It follows from the definitions and Lemma 2.1 Section 2.1 that this morphism sends
Grg" to Grg". And we deduce from the canonical isomorphisms

ANF =AY (FNE) @A~ (F/FnE)
that it is induced by the restriction
(us)ses F (us)ses-
Finally, for S” any face of S, there exists a sequence
S=25, S1, ..., Sp=29

of faces of S ranging from S to S’ and each of which is a boundary of the previous
one. Then the restriction (us)ses > (us)sess is written as a composite of restric-
tions at the boundaries; according to what we have already seen, it sends Grg" to
Grg". O



24 L. LAFFORGUE

For S a family of entire convex tiling of S™" such that the intersection of any
two of them either a face of each of the two, or Grg" the closed subscheme of

G\ H [(A“A” ® - @ATAT) — {0}
(Z.07~~A,in)€us€§s

n

of tuples (u;,, .. i, ) such that, for any element S of S, the restraint tuple

(Uio,...,in)(io,...,z'n)es

is in Grg"”. When S is a convex entire tiling of S™" and as announced in Section
1.3, we will show later on Grg" as the fiber of Q™" above marked point ag of the
orbit Ag in A™™. B

If S is an entire convex polyhedron in the space

{(x07"'axn)€Rn+l Z .’Ea:T'},

0<a<n

denote
d; = i o
min_ { )

the convex family of integers indexed by subsets I of {0,...,n} that defines it.

Then, according to Lemma 1.7 and 1.8 of Section 1.3, the schemes Grg" classifies
the families (F) of subspaces of dimension r in E = Ey@---& E,, indexed by faces
of elements of S such that:

— for any S and any subset I of {0,...,n},
dim(Fs N Ep) = df,
— for any S and any face S’ of S defined by an equation of the form
Z To = d7,
acl
Fg = (FsN E;) ® Fs/(Fs N Ey).

This leads to the introduction of the stacks Vecgn classifying the families (F*¥) of
vector spaces of dimension r indexed by faces of elements of S and equipped with
following supplementary structures:

— for any S and any subset I of {0,...,n}, a subspace FIS of F§ of dimension
d?, with the condition that

FPNFy =Ff,;, VI,J
and in particular
FP C FY
=ty
if I CJ,
— for any S and any face S’ of S defined by an equation of the form

Zxa:di

of isomorphisms

FY = FF, B P8/



INVENTION 25

where J = {0,...,n} — I and then FS' = F?" @ F¥', with the condition
that each Ff = Ff . @ F$ . is transformed to Fi , @ FISU(JQK)/FIS.
We also ask that for any S and any face S’ of S, the various isomorphisms
between F'S" and a certain graduation of FS deduced from the previous
ones by composition are merged.

For any S, we then have a natural projection

N N
Gr§ — Veci .

3.2 Smoothness of schemes of glued graphs

Given S a convex entire tiling of S™", we would like to build the scheme Grg"
by gluing one by one the schemes Gry" associated with tiles S of S. To do this, we
need to put an order relation on the set of tiles of S. Let’s do it this way:

Lemma 3.1. The set of tiles of any convex entire tiling S of S™™ can be totally
ordered so that, for any tile S of S and any subset I C {0,...,n}, we have:
— if 0 € I, the face of S of equation
S o -
acl

is contained in the union of boundary of S™" of equation o = 0 and of
tiles S’ < S of S,
— if 0 ¢ I, the face of S of equation

E Lo =dY
acl

s contained in the union of boundaries of S™™ of equations
r1=0, ..., £, =0
and of tiles 8" > S of S.

Proof. By definition of convex entire tilings, there exists a convex function v on
S™™ such that the tiles of S are the maximal entire tiles on which v is affine. If x
is a nonzero vector of the space

{(xo,...,mn) eER™ Nz, :0}7

0<a<n

we have for any tile S of S of the slope g—Z(S ) in the direction x of the affine map

v restraint to S.

We can choose the vector = (xq, ..., x,) so that the slopes %(S) are two by
two distinct and that ¢ > 0, z1,...,2, < 0 so that for any subset I C {0,...,n}
we have Y ;2o >0if0€Tand ) ;20 <0if 0 ¢ 1.

Then the order relation defined by

v ov
S < s —(8) < — (&
<8 = 8:1:( ) < 6x( )

answers the question asked. [
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The convex entire tiling S of S™" will now be provided with such a total order
relation. We denote S the convex entire tiling induced by S on the boundary of
S of equation xg = 0 identified with S™"~1; this is a finite set of tiles of S™"~1.
And for 0 < k < #5S5, we denote S, the set of first k tiles of S and those of the tiles
of S\, which are not boundaries of these.

We have a commutative diagram

n n rn rn
Gr§O Gr§1 Grﬁk Gri

L | J

,n ,n ,n ,n

VecS <—Vecs — - <—Vecs — - <—Vecs

for which we are going to show:

Theorem 3.2. With the notations above, the stacks Vecg:, 0 <k < #S, are

algebraic (in the sense of Artin), smooth and equidimensional and the schemes
Grs are smooth on Vecs , thus smooth, and equidimensional.

In addition, for 1 <k < #S, the morphisms VeCS — VeCS" are smooth and if
S is the k-th tile of S that we have added to S;,_; to form S}, we have

dimGrg:_dimGrglil - {Z }(_1)n_#1 (r_d{o})d{O}Uf d{l ..... n}ds
IC{1,....n

Proof. Proceeding by recurrence on n and k, we can assume have already shown
that Vecg’li1 is algebraic, smooth and equidimensional and that Grgll is smooth
on Vecg’: _» thus smooth, and equidimensional. Indeed, it is obvious for Vecg’l and
Grg’1 and on the other hand, if n > 2, Vecr and Grs are identified with Vecr n-l
and Grr 1

Let then S be the tile of S that we have added to S;,_; to form S, and let S’ be
the family of faces of S which is defined by equations of the form Y. _,; z, = d7
with {0} C T € {0,...,n}.

Then the stack Vecg’" is identified with 2-Cartesian product Vecg’:l1 X Veer Vecy

acl

n

and the scheme GrS with Cartesian product Grg:_l XGrr Grg".

The stack Vecg” classifies the vector spaces F' of dimension r equipped with a
family (F7) of subspaces of dimension d7 indexed by subsets I of {0,...,n} such
that, for any I, J, we have F; N F; = Fjn; and in particular F; C F; if I C J.

And the stack Vecg’," classifies the spaces F’ of dimension r — d“{qo} equipped with
subspaces Fy, {0} C I C {0,...,n}, of dimension d7 — d{SO} such that F; N F) =
Fi.;, V¥ I, J, moreover the data of spaces Fy, I C {0,...,n}, of dimension d7 and
of a coherent system of inclusions F; < Fy, I C J, with FiNF; = Fin5, I, J C K,
and of isomorphisms Fr/Foy = F7, {0} €1 € {0,...,n}.

The morphism Vecg" — Vecg’,” consists of associating to spaces F' equipped
with Fy, I C {0,...,n}, the spaces F’' = F/Fyoy equipped with F; = Fr/F(o,
{0} € 1 C{0,...,n}, moreover the sub-families (Fr);cqo,....n}-

Let again Homg" the stack classifying the families composed of a subspace Fyoy
of Ejy of dimension d?o}v of a space I of dimension rfdfo} equipped with subspaces
F7, {0} €1 CH{0,...,n}, as above and of a homomorphism u : F" — Ey/Fygy such
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that for any I C {0,...,n}, dim(Keru N FJEO}UI) = d3. By associating with any
such family the space F' = Ker(Ey @ F' — Ey/F(o}) equipped with subspaces

FI:Ker(EO@FII_)EO/F{O})a {O}QIQ{O,,H}

and
Fr = KeruOF{’O}UI, Ic{1,...,n},

we defines a morphism Homg" — Vecg".

Likewise, let Hom{," the stack classifying the families composed of a subspace
Froy of Eg of dimension d{so}, of a space I of dimension r — d‘{go} equipped with
subspaces

F;, {0} CT1CH0,...,n}
as above and of homomorphisms

ur : F{O}Ul — Eo/F{o}, I g_ {0,...,71},

whose kernels are of dimensions d7 and which are compatible with the inclusions
Floyor € Floyus» I € J. Here again we have a morphism Homg," — Vecyg,".
To restrict to F{o}ula I ¢ {0,...,n}, the homomorphisms u : F' — Eg/Fpy
defines a morphism Homg" — Homy," above Vecy"™ — Vecg,".

Remark that the data of a subspace F of E = Eq®---® FE, is equivalent to those
of subspaces F'NEy of Ey and F/(FNEy) of E1®---® E, and of a homomorphism

j: F/(FNEy) — Ey/(FNEp). Then we have natural morphisms
Grg" — Homyg"
and Gry," — Homg," and Grg" is identified with Gry," X Hom? Hom{g".
In sequence, Grg: is identified with Grg:il X Hom Homg" and we are led to
prove the following lemma:

Lemma 3.3. With these notations, we have:

(i) The stacks Vecg," and Vecg" are algebraic, smooth and equidimensional
and the morphism Vecg" — Vecg’/n is smooth.
ii) The schemes Hom'y,' and Hom%" are smooth on Vecy' and Vecy", thus
s s s s
smooth, and equidimensional. In addition,

dimHom§" —dimHomyg" = Y (=1)"#/ [(r — d{oy)d{oyor — df ayd7 -
IC{1,....n}
(i) The morphism
Grlrg”%1 — Homyg, X Vee" Vecg’]%1

1s smooth.

Proof of Lemma 3.3. (i) Let us proceed by recurrence on the dimension n. First,
let’s build the stack Vecy,". By hypothesis of recurrence, the stack of spaces F’ of

dimension r — dfo} equipped with

Fr, {0} €1CH0,...,n}
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is algebraic, smooth and equidimensional. It is the same, for {0} C I C {0,...,n}
and #I = n, of stack of spaces F; of dimension df equipped with subspaces FT f,
K C I, of dimensions d3- such that

FrxNFr=Frgnr, VK, LCI.

Now the stack Vecg.’," is representable on the product of these stacks as that of
families of isomorphisms

FI’K%F‘LK,{O}QI,J’CA{O,,n}, #I:#J:n, KgIﬂJ

and
FLK/FI,{O} gF;{a {O} gKgIg {07'~~an}7 #1=mn,
compatible with each other and with the different inclusions. It is therefore alge-
braic, smooth and equidimensional.
Let’s see now the morphism Vecg" — Vecg,". To reconstitute the space F with
Fr, I €{0,...,n}, choose F' of dimension  and an embedding Fyp; — F and an
isomorphism F/F(gy = F’ then embeddings

Fr—F, {0} CI1C{0,...,n}, #I =n,

which lifts Fy/Fgo; = F; < F’ and that are compatible. We see that the stack
Vecg" is algebraic, smooth on Vecg,”, thus smooth, and equidimensional.

(ii) Above Vecy/, the stack Homp/ is is that of the embeddings Foy — Ep
and of homomorphisms u; : F{’O}UI - Eo/Fpoy, I €{1,...,n}, of kernel of Fj —
Froyur/Froy = F{/O}UI and compatible with each other.

Likewise, above Vecg", the stack Homg" is that of the embeddings Fyoy < Eo
and of homomorphisms u : F//Fyoy — Eo/Fyoy pf kernel Fyy, .,y — F/F{o}.

Thus, Homy," and Homg" are smooth on Vecg," and Vecg", thus smooth, and
equidimensional. More precisely, let’s see how to go from Homy," to Homg". We
must first choose a homomorphism u : F/F, — Eo/F{o of rank 7 — df{qo} -
dflwln},hence a difference in dimensions equal to

(T*d?o}*d}i,...,n}) (Q(T*dfo})*(r*d‘{go}*d?l,...,n})) = 7'2*27"d?0}+(df0})2*(d?1 ...,n})z'

Then it is necessary to impose that for any I C {0,...,n} we have Keru; C Ker u,
hence a new difference in dimensions

Z (_1)n7#1(7‘ - d{so} - d{S1,...,n})d§~
1¢{0,...,n}

)

Finally, it is necessary to impose that for any I C {1,...,n}, us coincides with u
on Ffo}ul/ Ker uy, hence a final difference in dimensions

> () —dfoy) (o0 — Aoy — d7)-
IC{1,...,n}

The total dimensional difference is therefore

e [(r ) — (r — dS) S — S ]
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which is the announced formula since
> (=yr#=o.
IC{1,...,n}
(iii) Since Homg," is smooth on Vecy,", the fiber bundle product Homg;" X Veel Vecg;il

is smooth on Vecg’:  just like Grg’: .- It suffices then to show that the morphisms
induced by
r,n T,n N
GI‘gkil — Homyg, X Vee Vecﬁki1
above geometric points of Vecg’: | are smooth. Now this is clear since they are
restrictions to open subsets of certain projections between affine spaces. O

Final proof of Theorem 3.2. Given the recurrence assumption on Vecg’: and Grg’: ,
Sk_1 S
Theorem 3.2 is deduced from Lemma 3.3 according to the identification
rn o __ rn . rn
Vecﬁk = Vecﬁki1 XVecl; Vecg
and
rno__ n n
Grﬁk = Grﬁk,l X Hom?;" Homy
and the factorization of morphism
r,n r,n
Grﬁk — Vecﬁk
into
Hom3" Xveer» Vecg” — Vecg™.
8 Vecy, V Sk V Sy,

3.3 Calculation of the dimension

Let us first introduce a convenient notation. If S is a entire convex polyhedron
in the space

{(xo, ... 2n) €ER™ | D" ay =1}

0<aln

defined by the convex family of integers

(df = min {Zxa})lg{o,...,n}7

yoesTn ) €S
(@o on)€ acl

we put
45 = Z (_1)n+1—#1d}9.
1€{0,...,n}
Let’s start with the following lemma:

Lemma 3.4. For S a entire convex polyhedron which is not a tile i.e. having
codimension > 1, we have

dS _ Z (_1)n+1—#1d}9’ —=0.
I1C{0,...,n}
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Proof. By hypothesis there exists a partition of {0, ...,n} into two nontrivial sub-
sets J and K such that

r= df&...,n} = d§ + d}g(
and

Zxa = d3, Z Lo =d%, V (zo,...,2z,) €S.
acJ aceK

Then we deduce from Lemma 2.1 of Section 2.1 that for any subset I of {0,...,n},
we have

7 = d?ﬁ] + d}SmK
in addition
#HI=#INJ)+#(INK).

We obtain by consequence

d¥ = (=) YT ST (a4 df)

I'CJI"CK
= (D)"Y (=n#ag Y (-
I'CJ I'"CK
+ (=) (—nFad, Y (-n#
I'ICK I'CJ
which is zero as announced. O

If S is a entire convex polyhedron in the space
{(Z‘o,...,xn) € R+ | Z Lo = T}
0<a<n

associated with a convex family of integers (d7), we denote Sy and S° the entier
convex polyhedra of spaces

{(z1,...,2z,) € R Z Tq :r—d{so}}

1<a<n
and
{1, 2n) ER™ | > mo =dfy 3}
1<a<n
defined by
(xlw..,xn)€A$)¢:¢(dﬁn,xlw..,xn)e S,
and
Ty, ..., 1) €SO <::>(rAAVde””n},xl,...,xn) €s.

Lemma 3.5. For S a entire convex polyhedron defined by a convex family (d}g), the
entire convex polyhedron associated to So and S° are defined by the convex families

d° = dfy ;- diyy, TS{1,...,n}
and
a3’ =d$, 1C{1,... n}
In particular, we have

S =d% —d%.
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Proof. The first assertion is resulted from Lemma 2.3 of Section 2.1. It leads to the
second according to the definitions and the formula

> (-n* =0
IC{1,...,n}
O

From Lemma 3.4 and 3.5 we deduce that the invariants d° attached to entier
convex polyhedra S are additive.

Proposition 3.6. Let S be a convex entire tiling of simplex S™™. Then if S runs
through the set of tiles of S, we have

st dSTn_

Proof. We proceed by recurrence on n. For n = 1, the formula expresses the
obvious fact that the sum of the lengths of any finite family of intervals constituting
a partition of [0,7] is r.
Suppose then n > 2 and the formula already established in rank n — 1.
According to Lemma 3.5, we can write

st _ Z(dso o dSO)
S S

and according to Lemma 3.4 one can remember in this sum only Sy and S° which
are dimension n — 1. Now any face of S of dimension n — 1 is shared by two tiles
of S exactly, unless it is on a boundary of S™". After simplification we obtain

YIS SRS
S S, ds 55y =0
Now, when S runs through the subset of tiles of S such that d? {0}y = =0, Sy constitutes
the convex entire tiling of S™"~! induced by that of S™" via the embedding
Sr,n—l oy g7
(1, ,2n) = (0,21,...,2,)
We conclude according to the hypothesis of recurrence. [

The above combined results now allow us to deduce from Theorem 3.2 of the
preceding section the corollary:

Corollary 3.7. For any convex entire tiling S of S™™, the scheme of glued graph

Grg" is smooth of constant dimension nr?.

Proof. Let S, be the convex entire tiling induced by S on the boundary of S™" of
equation zo = 0 identified with S™"~!. According to Theorem 3.2, Grrn ! and
Grg" are smooth and equidimensional and if S runs through the set of tlles of S,

we have

dim Grg’ —dim Grr 1

S n#f[udfm)dfwdfl,.._,n}df.

S IC{1,...,n}
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If n =1, it is obvious that G]rg’iJ is of dimension 0 and if n > 2 we can proceed by
recurrence and suppose already proved that Grg’:_l is of dimension (n — 1)r2. It
is remained to calculate the sum on the tiles S of S above.

According to Lemma 3.5, it is still written

Z {(7" - d?o})dso - d%,...,n}ds
s

and according to Lemma 3.4 we can retain in this sum only the Sy and S° which
are of dimension n — 1. And these, unless they are on the boundary of S™" of
equation zg = 0, are shared by two tiles S, S’ of S exactly and which satisfy
S S’ S0 S}

dfy,..my =7 —dgyy, d7 =d>.

After simplification, the sum reduces to
Z rd.
S,d{y,=0

Now, when S runs through the subsets of tiles of S such that dfo} =0, Sp runs

through the entire convex tiling S, of §""~!. According to Proposition 3.6, on
conclude as wanted that the sum above is equal to 2. [
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Chapter 4

The properties of schemes of n-complete
homomorphisms. Application to the
Lang’s isogeny

4.1 Projectivity of the representation morphisms

These are what we call the projections:

Qrn Gm\ H |:(Ai0AT R ® AinAr) —{0}],

(7;0;-~77;n)esr’n

Q"= J[ PA*AT®---@AmAT).
(204eenyin ) EST™
By construction, their restrictions on open dense subsets
Qp" = (G G5 ") /(GL, Gt
and
Q" = PGL"™ /PGL,

are locally closed immersions, and on the other hand the second is the quotient of
the first by the free actions of torus G35, " /G,,.

We will demonstrate here Theorem 1.5 of Section 1.2 which asserts that these
two morphisms are projective.

It is enough to verify that the first one is and, as we already know that it is
quasi-projective, that it satisfies the valuative criterion of properness. Thus, we
have to see that any point of

(10yevnyin )EST™
with values in a discrete valuation ring A and which generically is in Qy" lifts
(uniquely) at a point of Q™" (A).

Referring to the construction of the toric variety A™", this means exactly that
if u is a point of GL""* / GL, with values in a field K equipped with a discrete
valuation vk and

(ui07...,i”)(ig,...,in)GST»”
a tuple which is the representation in

H l:(AioAT(g)...@AinAr)_{O} ’
(0,00 ryin ) EST™

then the map v : S™" — Z which to any index (ig,...,i,) € S™" associates the
minimum of valuations of coordinates of u;, . ;, € (AA" @ --- @ A»A") — {0}
must be in the cone C™™. In other words, we must show that for any affine map
l: 8™ — R satisfying | < v, the set

{s€5™ | 1(s) = v(s)}



34 L. LAFFORGUE

is an entire convex polyhedron as long as it is not empty.

As v takes its values in Z, we can suppose that [ takes his values in Q and also in
7Z, if we replace the defining field K of u by a sufficiently ramified finite extension.
In these conditions, there exists an element A = ()g,...,A,) € (K*)"*! whose
image

()\iD;-<-7i'rL = )\OA;ZI U A’I’_L’Ln)(i(]w"fin)esr’n
in (K*)%"" satisfies

l(%o,,ln) :’L}K(Aio ,,,,, in)’ v (Zo,,ln) e Shm.
Then the tuple
-1
(o in Wioyesin ) (ios...rin ) ESTT

defines a point of scheme

( I a"a"®--oAmA") {0}

(%0,0vnsin)EST™

with values in the valuation ring A of K and it represents the unique point of
Gr""™(A) which extends the point A~'u € (GL""" / GL,)(K). We conclude accord-
ing to Lemma 1.7 of Section 1.3.

4.2 Smoothness of stratification morphism. Identification of
its fibers
Here we want to prove Theorem 1.6(i) and Theorem 1.9 of Section 1.3.

For any convex entire tiling S of S™", we have already constructed the closed
subscheme Grg" of

(i0,.--,in )EST™
which is smooth of dimension nr? and admits the modular characterization of

Theorem 1.9 of Section 1.3. We remark that the sub-torus G;in of Gf;’n stabilizer
of marked point ag of the orbit Ag in A"™"™ preserves Grg"; this results from the

fact that for any tile S of S, the morphism GE — G5 — G2 is factored through
Gl — G5 — G2, If in consequence we send Grig" to ag, we define a locally

] : S ™n .
closed immersion of Gﬁ\(G% % Grg’”) -

Gm\ I1 [(AiOAT®~--®Ai’IA7’)—{O}}xAT’”.
(

10,0y0n ) ESTT

Lemma 4.1. Let A be a integral local ring and

Spec A — Gm\ H |:(Ai0AT ® - ®A"mAT) — {O}} . AT

(0,---yin ) EST™

be a morphism which generically is factored through G,%\(G;g;’n X Grgn).

We suppose that the closed point of Spec A is sent in A™™ to a marked point
agr associated to a convex entire tiling S which necessarily refining S, so that the
preimage of agr in Spec A is a closed subset defined by an ideal I of A.

Then Spec(A/I) is sent in the closed subscheme Gryg,".
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Proof. Denote K the fraction field of A. As the exact sequence
156G -G -G /GE -1
is split, the induced point
Spec K — Gm\ H [(A%Ar ®--- @ A"mA") — {0}
(605-+yin ) ESTT

can can be represented by a tuple of the form (u;,,..4.) = (Mig.....i, Gio,....in,) Where
A are scalars in K* and g;,,.. ;, are elements of

n

(A"K"® - @ A" K") — {0}

10500 eylin

which defines an element of Grg"(K). And as this point extends to Spec A, we
can also suppose (by imposing, for example u, . o = 1) that each u;, _;, has
coefficients in A, at least one being invertible.

Let then S’ be a tile of S’ and S the tile of S which contains it. According
to Lemma 1.2(iv) of Section 1.1, S’ contains a generating family. If we modify
tuples (As)sesrn and (gs)sesrn by an element of (K*)"*+t c (K*)%"", we can
suppose that Ay = 1 in the s of chosen generating family. By construction of
the toric variety A™" this means that the \;1, s € ™", are in A, that they are
congruent to 1 modulo I when s € S and they are in I when s € S™" — §’.
In consequence, the tuple ((us)segx, (0)5657',71_5'/) is congruent module I on tuple
((9s)ses’, (0)sesrn—gr) thus defines a point with values in A/I of the stratum Gry,"
of the Grassmannian Gr™".

This is true for any tile S’ of S, we are done. O

According to Lemma 4.1, there exists a (unique) closed subscheme 2 of

Gm\ 11 [(AiON®~~®A“N)—{O} X AT

(i(Jv'--ain)EST’n

which is invariant by the action of torus G " and whose fiber above each marked

point ag of A™™ is equal to Grg’". Thus, all fibers of this scheme above points
of A™" are smooth of dimension nr?; in addition, it merges above the dense orbit
Ay of A" with the open dense subset Q3™ of scheme Q™" then it contains Q™"
as closed subscheme.

We will have proven Theorem 1.6 (i) and Theorem 1.9 of Section 1.1 if we proved
that this scheme w is equal to Q™™ and it is smooth of relative dimension nr? above

A™™. But this follows from the following lemma:

Lemma 4.2. Let S be a convex entire tiling of S™™ and u a closed point of scheme
Grg".
Then there exists a locally closed subscheme of

’ig,‘..,in)EST’”

. . . . T,n . . .
contains w, invariant by the action of torus G ", smooth of relative dimension

nr? above A™" and whose fiber above marked point ag = 1 of the dense orbit

Ap™ = G5 /G of AT™ is an open subset of Gry" = GL™ /GL,.
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Proof. Let Spec A be the affine scheme projective limit of affine open subschemes
of
Gm\ 11 [(Ai"A’"®-~~®Ai"A’”) —{0}} x A"
(i0yrnyin) EST
which contains u and are invariant by the action of torus G5, . Thus A is an
integral ring whose field of fractions is identified with the field of functions of

G\ (A7 (A7) = {0}) A"

it is invariant by the action of G5 " and its finished points on A™" are the trans-
forms of u by this action.

Let I be the ideal of A which defines the closed subscheme of Spec A induced by
Q. This ideal is generated by the subset .# of its elements on which G acts by
a character.

Recall on the other hand that the point u consists of a family of closed points
ug in stratum Grg" of the Grassmannian Gr™". where S runs through the finite
set of tiles of S and of their faces. Any point g of the fiber of Spec A/I above ay is
a point of Grg’n; by construction of A, its orbit under the action of GTSJ’" contains
in its closure the point u, and thus g, as a point of Grg’n — Gr™", contains in its
closure at least one of the points ug. The ideal I is again defined by the subset .#’
of .# of its elements which are well defined in the neighborhood of the points ug.

The codimension in

Gm\ (AT(AT)n+1 _ {0})
T
(n+1)r
1 — nr? elements in .#’ whose relative differentials on A™" are

of smooth schemes Gr™" and Grg" is equal to C' —1—nr2. Tt is thus possible

-
(n+1)r —
linearly independent at the point u (so that it defines a closed subscheme of Spec A
which is formally smooth of relative dimension nr? on A™") and at all points ug
(so that above «p it generates the ideal T).

Then these C(, nt1)r 1 —nr? equations define in the invariant open neiborhoods

by G5 and sufficiently small of u in

to choose C'

G?n\ H |:(A7'0A"‘ R ® A'LnAr) - {O} o Ar,n
(0y+-eyin ) EST™

of closed subschemes that answer the question posed. O

4.3 Smoothness of morphisms of restrictions to faces

Let’s give proof of Theorem 1.6(ii) of Section 1.3.
By functoriality, it is sufficient to prove that if

¢:{0,...,n—1} = {0,...,n}
is the injective map
a—a+1,
then the induced map

QP = QP X e AT

is smooth of relative dimension r2.

According to Theorem 1.6(i) of Section 1.3, the schemes Q™" and Q""" X 4rn—1
A"™™ are smooth of relative dimensions respectively nr? and (n—1)r? on A™", thus
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it suffices to show that the induced morphisms between fibers above points of A™"
are smooth. In other words, it is necessary to see that if S is an entire convex tiling
of the simplex

S™" = {(ig,...,in) €N g+ +i, =1}

and S, the induced convex entire tiling of boundary of equation iy = 0 identified
with S™"~1, then the morphism of restriction to this boundary between schemes
of glued graphs Grg" — Grg’:’_l is smooth.

Now, with the notations of Section 3.2, we have a commutative diagram
r,n—1

r,n
Grg" —— Grg

|

r,n—1

Vec'y" —— Vec
S Sy

and according to Theorem 3.2 of this section, we already know that schemes Grg"

and G‘rrg’:*1 are smooth on the stacks Vecg" and Vecg’:*l and that the morphism

Vecg" — Vecg’:_l is smooth. Thus, we are reduced to prove that the morphism

rn rn—1 r,n
Gri — Gr§0 xvecg‘;_l Vecg

is smooth and for that the induced morphisms between fibers above the points of

Vecg" are smooth. Now, above a point of Vecg" with values in a field K, the

fibers of Grg" and Grg’;kl Xyeernn—1 Vecg" are representable by two open subsets
s S, o S

and two vector spaces of finite dimension on K and the morphism from one to the
other is induced by a linear map between these spaces which is surjective; indeed,
the canonical splitting of the exact sequence

0—=Ey—>F—FE;. . np—0

defines for it a section.
This finishes the proof of Theorem 1.6(ii) of Section 1.3 and thus of all the results
stated in Chapter 1.

4.4 Application to Lang’s isogeny

In this final section, we take for base a finite field F,; with ¢ elements. Thus all
schemes on this base are equipped with Frobenius morphism of elevation to power
q, which we denote as 7.

We will construct a projective compactification Q"7 of PGL, equipped with two
morphisms to the compactification Q"' of PGL? / PGL, = PGL, included in two
commutative diagrams:

g PGL,——— Q"7

J

! PCL, Q"'
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g PGL,—— Q"7
t(g)tog PGL,C—— 0"

In this sense, " will perform a compactification of the Lang isogeny g — 7(g)~*og
in PGL,..

Asin Chapter 1, we first build a toric variety A™7 which will serve as a parametriza-
tion scheme.

Recall that in the real vector space of functions

v ST’2 = {(io,il,ig) S N3 | 10+ 11+ = 7”} - R,
we have defined the cone C™?2 which corresponds to the toric variety A™2. It is

written naturally as the disjoint union of convex cones Cg’z indexed by the convex
entire tilings of triangle S™2. Let then C™” be the intersection of C™2 with the
subspace of functions v : S™? — R such that for any i;,i» € N2, i; + iy = r, we
have v(0,i1,42) = qu(i1,0,42). And let Cg" be the intersection convex cones of CQQ
with this same subspace; we call q—convgx entire tilings of S™?2 those entire tilirrgs
S for which Cg” is not empty. The trivial tiling § of 5™ is g-convex and Cy'" is the
subspace of functions of the form S™? — R : (ig, i1,%2) — aig + gai; with a € R.

Of course, C™7 is the disjoint union of CET and this satisfying the same properties
of that in Proposition 1.3 in Section 1.1. The general theory showed in | 1182]

thus allows to associate to C™*™ a normal toric variety A™7 of torus Ay" = G5 /G
where

ST = {(io,il,ig) (S N3 | o+ +io=r and 0 # O} g ST’2
and G,, is embedded in the torus G35, " by A+ (A4, 4, = A°T1). The orbits in
A"7 are locally closed subschemes indexed naturally by the g-convex entire tilings
S of S™2; we denote it as Ag". The closure of an orbit Ag" is the union of AgS

for S’ refining S.
The embedding

T, T r,2
Gh " Gt (Niguiniaioz0 = (Nigyinia)
if iy # 0 and Ao, = 1 induces an embedding G5 /G,,, <

(Gg\'2 /G2, which in turn extends into an equivariant closed immersion A" < A2
Each orbit AY" in A™" has a marked point which is sent by this immersion to the

=\
where Ao.iy i, = Aj, 04,

marked point ag of Ag’Q and that therefore we can again denote as ags.
The three strictly increasing maps {0, 1} — {0, 1,2} induces three injections
St = {(io,il) e N? | 10+ 11 = 7“} — S
(i0,71) + (0,40,11), (i0,0,i1), (d0,i1,0)
then three equivariant morphisms pg, p1,p2 : A™2 — A™! thus that three other
Po,P1,p2 : 172 — Q™! above these. And A™7 has been constructed in such a way

that the three morphisms pg, p1,p2 : A" — A™! induced via the closed immersion
A"T < A™? satisfying pg = 7 o py.

Theorem 4.3. Let Q™7 be the closed subscheme of Q™2 X 4r> A" defined by the
equation pg = T o p1 in Q™. Then:
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(i) The scheme Q"7 is equipped with a free action of torus G;?;'T and with two
equivariant morphisms
p1,p2: QT — Q1
above
p1,p2: A7 — A

(ii) The morphism Q"7 — A™7 is equivariant and smooth of relative dimension

r2.

Proof. (i) is obvious.

(ii) The smoothness results from the fact that, according to Theorem 1.6 of
Section 1.3, the scheme Q72 is smooth of relative dimension 272 on A™2 and the
morphism pg : 272 — Q™1 x 4.1 A™? is smooth of relative dimension r2. O

If S is a g-convex entire tiling of triangle
572 = {(ig, i1,42) € N* | ig + i1 + iz =1},
we denote Grg” the fiber of Q™7 above marked point «g of the orbit Ag" in A™7.

As the tiling S is g-convex, it induces the same tiling S, on the sides of equations
ip = 0 and 4; = 0 identified with S™'. Then Grg’ is the closed subspace of

Gdrg’2 defined by the equation py = 7 o p; in Grg’j. Thus Gry” admits a modular
interpretation deduced from cells of Grgz, Grrg1 and pg,p1 : GI‘EQ — Grgl.

In particular, when S is the trivial tiling 0, Grlrg’o1 = Gr6’1 is identified with
GL? /GL, = GL, and Grg" = Gra’T is identified with closed subscheme

{(90,91,92) € GL} | 1 = go © g2 and go = 7(g1)}
so that p; : (go, 91, 92) = g1 is an isomorphism and that poop;* : g1 +— 7(g1) ‘o
is the Lang’s isogeny.
Finally, the quotient Q"7 of Qn7 by the free action of torus G5 is a closed
subscheme of o thus a projective scheme. It contains PGL, as open dense subset

—r2 =1
and it is equipped with two morphisms pq, ps : Q7" = Q" which realizes a com-
pactification of the Lang’s isogeny as announced at the beginning of this section.
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Erratum

In this paper, we have constructed for any rank r equivariant compactifications
Q7" of quotients PGL"*' /PGL,, n > 1. Tt is equipped with natural morphisms
on “toric stacks” A™"/Ay™ (quotients of toric varieties A" par their tori Ay" =
G5 /GrF1) whose corresponding points of “convex entire” tilings of entire simplex

ST = {(ig, - in) €N g+ iy =71}

and their strata i.e. their fibers above these points admit a modular description in
terms of corresponding tilings.

It was also claimed (it was Theorem 1.6 of Section 1.3) that for any rank r and
any power n > 1, the morphism of structure Q' — AP AP™ was smooth and that
for any injective map

¢:40,...,p} = {0,...,n},

the induced morphism “of face”
ﬁr,n N ﬁ’l‘,]) X_AT#’/_AE"' Ar’n/Agm

was equally smooth.

But while preparing a lecture he was giving at the Institut Henri Poincaré, the
author realized in the first days of June 2000 that his “proof” was wrong in general
and that the case n = 3, r = 4 provides a counterexample to the smoothness
statement: the projective compactification "’ of (PGL4)*/ PGLy is not even flat
on A*3/ A%’S. Here are the series of cases where the smoothness statement is true
and proven:

e When n = 1: this is the particular case PGL? /PGL, of “miraculous”
compactifications of De Concini and Procesi.

e When n = 2: this is the first work of the author in this field, it was
the subject of the pre-publication which contains a complete and correct

demonstration.
e When r=2.

All this is detailed in a text that can be found on the electronic server of the IHES
preprints (March 2001).

In the general case, the fault in the study of singularities of Q" is located in
the “proof” of Lemma 3.3 of Section 3.2. Also false are all the general statements
of smoothness that depended on it, namely Theorem 3.2 and Lemma 3.3 of Section
3.2, Corollary 3.7 of Section 3.3, Lemma 2 of Section 4.2 and Theorem 1.6 of Section
1.3.

On the other hand, all the other statements concerning the construction of A4™"
and Q" and on their projective, functorial and modular properties are correct.

Let us recall finally that the author had been led to the problem of compact-
ification of PGLZ}+1 /PGL, by wanting to resolve the singularities of the stacks
of Drinfeld shtuka of rank r with level structures. For arbitrary multiplicities, we
have to compactify the adiagonal powers P2/P and P3/P of parabolic subgroups
P, which is almost the same problem as compacting the PGL?+1 / PGL, in general.
The author had thought to solve it in the preprint by giving a variant of his con-
structions of ﬁr’n; Here again, the constructions and all statements of projective,
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functorial and modular properties are correct but all statements of smoothness are
false.
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are constructed. Each one is decomposed into locally closed strata which are
smooth, are indexed by the entier convex pavings of the simplex of dimen-
sion n and admit a modular interpretation deduced from that of the Grass-
mann varieties. Together, they form a simplicial scheme which “compacti-
fies” the classifying simplicial scheme of PGL, consisting of all the quotients
PGL?*+! /PGL,, n > 0.

TRANSLATED BY MINGYI ZHANG


https://doi.org/10.1515/crll.1997.483.183
https://doi.org/10.1016/0001-8708(87)90059-4
https://doi.org/10.1007/BFb0070318

	Definition, description and statement of main properties
	The scheme of convex entire tilings of simplex
	Construction by schematic closure
	Smoothness and modular descriptions

	entire convex polyhedrons and convex entire tilings
	An equivalent definition of entire convex polyhedrons
	The properties of entire convex polyhedrons
	The properties of cones of convex functions on the simplex

	Stratification of the Grassmannian and schemes of glued graphs
	The entire convex polyhedron attached to a graph. The restrictions to boundaries
	Smoothness of schemes of glued graphs
	Calculation of the dimension

	The properties of schemes of n-complete homomorphisms. Application to the Lang's isogeny
	Projectivity of the representation morphisms
	Smoothness of stratification morphism. Identification of its fibers
	Smoothness of morphisms of restrictions to faces
	Application to Lang's isogeny


