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2 L. LAFFORGUE

Introduction
For all integers r ≥ 2 and n ≥ 1, we construct a projective compactification Ωr,n

of PGLn+1
r /PGLr which satisfies the following properties: it is equipped with an

action of PGLn+1
r , it is normal and even toroidal (more precisely, it has a smooth

morphism on the quotient stack of a certain toric variety Ar,n by its torus Ar,n
∅ ), it

is naturally stratified as disjoint union of locally closed subschemes Ω
r,n

S indexed by
certain tilings S of simplex Sr,n of dimension n and of side r and which are smooth
and admitting a modular description.

There are several possible starting points.
One is the construction by De Concini and Procesi of compactification of (G ×

G)/G for any adjoint semisimple group G ([DP83]). For this purpose, they take
representations V of G×G in which exists a line h whose stabilizer is G diagonally
embedded in G × G; then the schematic closure in P(V ) of the orbit of point h is
a equivariant projective compactification of (G×G)/G.

In our situation, we consider the representation of PGLn+1
r obtained in the fol-

lowing way: denote Ar the affine space of dimension r, we make GLn+1
r act on

(Ar)n+1 and thus on Λr(Ar)n+1 then, Sr,n denote the simplex

{(i0, . . . , in) ∈ Nn+1 | i0 + i1 + · · ·+ in = r},
we decompose Λr(Ar)n+1 into⊕

(i0,...,in)∈Sr,n

Λi0Ar ⊗ · · · ⊗ ΛinAr

and we see that PGLn+1
r act on∏
(i0,...,in)∈Sr,n

P(Λi0Ar ⊗ · · · ⊗ ΛinAr).

If Ar is diagonally embedded in An+1
r , ΛrAr is identified with a line of ΛrAn+1

r whose
stabilizer in GLn+1

r is GLr diagonally embedded; in addition, ΛrAr is projected on
a line in each of the factors

Λi0Ar ⊗ · · · ⊗ ΛinAr

of ΛrAn+1
r and the stabilizer of induced point in∏

(i0,...,in)∈Sr,n

P(Λi0Ar ⊗ · · · ⊗ ΛinAr)

is PGLr diagonally embedded in PGLn+1
r . Then the orbit of this point is identified

with PGLn+1
r /PGLr and the equivariant compactification Ω

r,n
is obtained from

the schematic closure of this one in∏
(i0,...,in)∈Sr,n

P(Λi0Ar ⊗ · · · ⊗ ΛinAr)

by a few simple blow-ups (intended to separate the strata). When n = 1, Ω
r,1

is
none other than the compactification of De Concini and Procesi of

(PGLr ×PGLr)/PGLr .

Another starting point is the stratification of the Grassmannians into “thin Schu-
bert cells” (see for example [Gel+87]). We introduce the Grassmannian Grr,n of
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subspaces of dimension r in (Ar)n+1; this is a closed subscheme of P
(
Λr(Ar)n+1

)
.

For any point F of Grr,n represented by a nonzero element u of

Λr(Ar)n+1 =
⊕

(i0,...,in)∈Sr,n

Λi0Ar ⊗ · · · ⊗ ΛinAr

of which we denote ui0,...,in the components of it, the subset

S = {(i0, . . . , in) ∈ Sr,n | ui0,...,in ̸= 0}

is an entier convex polytope in the sense that there is a family of integers dSI indexed
by subsets I of {0, . . . , n} satisfying

dS∅ = 0, dS{0,...,n} = r,

dSI + dSJ ≤ dSI∪J + dSI∩J , ∀ I, J,

and

S = {(i0, . . . , in) ∈ Sr,n |
∑
α∈I

iα ≥ dSI , ∀ I}.

And if E0, . . . , En denotes the n + 1 factors Ar of E = (Ar)n+1 and EI , I ⊊
{0, . . . , n}, denotes ⊕

α∈I

Eα,

this family (dSI ) is given by dSI = dim(F ∩EI), ∀ I. Thus, for such an entire convex
polyhedron S, the scheme Grr,nS of tuples in

Gm\
∏

(i0,...,in)∈S

[
(Λi0Ar ⊗ · · · ⊗ ΛinAr)− {0}

]
which, completed by 0 in indices outside S, are in Grr,n, classifies the subspaces F
of E such that

dim(F ∩ EI) = dSI , ∀ I.

When S describes(it seems to mean that S to be any element of this set) the set of
all entire convex polyhedrons of Sr,n, Grr,nS constitute a stratification of Grr,n.

We mark equally that any “boundary” S′ of an entire convex polyhedron S
defined by an equation of the form ∑

α∈I

iα = dSI

is an entier convex polytope and that the morphism of restriction to this “boundary”

(ui0,...,in)(i0,...,in)∈S 7→ (ui0,...,in)(i0,...,in)∈S′

sends Grr,nS to Grr,nS′ and represents

F 7→ (F ∩ EI)⊕ F/(F ∩ EI) ⊊ EI ⊕ E/EI = E.

In consequence, for any entire tiling (i.e. whose tiles are entire convex polyhe-
dron) S of simplex Sr,n, we can glue schemes Grr,nS associated with tiles S of S of
along schemes Grr,nS′ associated with “boundaries” S′ shared by two tiles of S: no
introduce the closed subscheme Grr,nS of

Gm\
∏

(i0,...,in)∈Sr,n

[
(Λi0Ar ⊗ · · · ⊗ ΛinAr)− {0}

]
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of tuples (us)s∈Sr,n such that, for any tile S of S, the restraint tuple (us)s∈S is in
Grr,nS . They classify the families (FS) of subspaces of dimension r in E indexed by
tile S of S such that:

– for any tile S of S and any subset I of {0, . . . , n},

dim(FS ∩ EI) = dSI ,

– for any tiles S, S′ of S having in common a “boundary” of equation∑
α∈I

iα = dSI = r − dS
′

J

where J = {0, . . . , n} − I,

FS ∩ EI = FS′/(FS′ ∩ EJ), FS/(FS ∩ EI) = FS′ ∩ EJ .

In particular, we show that if S is a “convex” entire tiling, the glued graph scheme
Grr,nS is smooth of dimension nr2 thus independent of S.

We construct on the other hand a (normal) toric variety Ar,n of torus

Ar,n
∅ = GSr,n

m /Gn+1
m

whose orbits Ar,n
S correspond exactly to convex entire tilings S of simplex Sr,n, and

in such a way that an orbit Ar,n
S′ is contained in the closure of another Ar,n

S if and

only if the tiling S′ refines the tiling S. Then we build a quasi-projective scheme
Ωr,n equipped with an action of

GLn+1
r × GSr,n

m /Gm

and with a morphism

Ωr,n → Ar,n

equivariant under GSr,n

m ; this morphism is smooth of relative dimension nr2 and
its fiber above marked point αS of any orbit Ar,n

S in Ar,n is identified with glued

graph scheme Grr,nS . Then Ωr,n is stratified by the preimage of Ωr,n
S of orbits Ar,n

S

in Ar,n and each one identifies with

GS
m\(GSr,n

m ×Grr,nS )

where GS
m denotes the sub-torus of GSr,n

m stabilizer of the marked point αS . Finally,

the compactification Ω
r,n

of PGLn+1
r /PGLr is obtained as quotient of Ωr,n by the

action of GSr,n

m /Gm which is free; its strata Ω
r,n

S are the quotients of Ωr,n
S by this

same action and they are also identified with the quotients (GS
m/Gm)\Grr,nS .

Let’s say again in this introduction that for any map

{0, . . . , p} → {0, . . . , n},

the induced morphism

PGLn+1
r /PGLr → PGLp+1

r /PGLr

is extended to a morphism

Ω
r,n → Ω

r,p
.

The family of Ω
r,n

, n ≥ 1, equipped with these induced morphisms constitutes a
simplicial scheme which extends the simplicial classifying scheme of PGLr formed
of PGLn+1

r /PGLr.
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If the base field is finite with q elements and therefore we have the Frobenius
endomorphisms τ of elevation to the power q, the existence of morphisms

p0, p1, p2 : Ω
r,2 → Ω

r,1

deduced from the three ascending injections

{0, 1} → {0, 1, 2}
allows to build a compactification of the Lang isogeny of PGLr i.e. an equivariant
projective compactification Ω

r,τ
of PGLr equipped with a morphism

Ω
r,τ → Ω

r,1

which extends

PGLr → PGLr

gτ(g)−1 ◦ g.

The scheme Ω
r,τ

is also toroidal (and even it has a smooth morphism on the quotient
toric stack of a certain normal toric variety Ar,τ by its torus Ar,τ

∅ ). In the category
of schemes equipped with a morphism on a toric stack,

(Ω
r,τ → Ar,τ/Ar,τ

∅ )

is defined as the kernel of the diagram

(Ω
r,2 → Ar,2/Ar,2

∅ )
p0

−−−−−→−−−−−→
τ◦p1

(Ω
r,1 → Ar,1/Ar,1

∅ )

and Ω
r,τ → Ω

r,1
is then induced by p2 : Ω

r,2 → Ω
r,1

. The scheme Ω
r,τ

is disjoint
union of locally closed subschemes Ω

r,τ

S indexed by certain convex entire tiling S of

triangle Sr,2; these strata are smooth and admit a modular description.
The construction explained in this article is transportable to many other situ-

ations: here, we consider a space E with a graduation whose factors E0, . . . , En

have the same dimension, but we could as well take factors of different dimensions
or a filtration instead of a graduation... We will explain in the next article how
such a variant allows us to construct compactifications of Gn+1/G for G a para-
bolic subgroup of PGLr and then for G a transform of PGLr by Weil restriction of
scalars, with an immediate map to the compactification of the Lang isogeny on such
a transform; these compactifications are smooth over the quotient field of a certain
toric variety by its torus and they are disjoint unions of locally closed smooth and
modular strata. In particular, we obtain compactifications of the stacks of Drinfeld
shtuka with arbitrary level structures by forming simple fiber bundles. The partic-
ular case of level structures without multiplicities for which the compactification
of PGL3

r /PGLr and its map to that of the Lang isogeny in PGLr was announced
in a note to the Proceedings of the Academy of Sciences (series I, volume 325,
pg 1309-1312,1997) and detailed in a preprint from Orsay. Note that Faltings also
mentions the quotients Gn+1/G, for G a reductive group, in relation with the study
of singularities of local models (see[Fal97][Concluding remarks]). Moreover, when
G is a classical group, it is not difficult to adapt our work to build compactifications
of Gn+1/G satisfying always the same type of properties.

The present paper is organized as follows: The actual construction with its main
properties is given in Chapter 1 and the proofs related to the toric variety Ar,n,
to the schemes of glued graphs Grr,nS and to the global schemes Ωr,n and Ω

r,n
are
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collected in Chapter 2, 3 and 4 respectively; the map to Lang’s isogeny is given in
the last Section 4.4.

Once again, I thank Gérard Laumon for his never-weary availability, whether
to listen to me, to encourage me, to ask me to be clearer or to guide me in the
mathematical literature.

I would also like to express my gratitude to Mrs. Bonnardel who, once again,
did the typing of the manuscript.
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Chapter 1

Definition, description and statement
of main properties
1.1 The scheme of convex entire tilings of simplex

In this first Section, we will construct a toric variety whose set of orbits is
naturally identified with the set of “entire convex tilings” of the simplex. First we
want to define these tilings.

Let r ≥ 2 and n ≥ 1 two integers.
Let

Rr,n = {(x0, . . . , xn) ∈ Rn+1 | x0 + x1 + · · ·+ xn = r}
which is a real affine space of dimension n. It contains the lattice

Zr,n = {(i0, . . . , in) ∈ Zn+1 | i0 + i1 + · · ·+ in = r}
that we can call a lattice of integer points of Rr,n. And let

Sr,n = {(i0, . . . , in) ∈ Nn+1 | i0 + i1 + · · ·+ in = r}
which is the set of integer points of simplex

Sr,n = {(x0, . . . , xn) ∈ Rn+1
+ | x0 + x1 + · · ·+ xn = r}

in Rr,n.
In the real affine space Rr,n of dimension n, we call a “convex polyhedron” to

be any convex subset generated by a finite number of points. We can define the
dimension of such a polyhedron as well as its faces which are also convex polyhe-
dra and in particular its boundaries i.e. its faces of codimension 1. We also call
“(convex) tiles” to be those convex polyhedra which are of maximal dimension n.
Finally, a “tiling” of a certain tile is a writing of this tile as a union of smaller tiles
whose interiors do not meet.

Definition 1.1. A convex polyhedron S of the space Rr,n will be said to be “entire”
(i.e. matroid) if it is of the form

S = {(x0, . . . , xn) ∈ Rn+1 |
∑

0≤α≤n

xα = r and
∑
α∈I

xα ≥ dI , ∀ I}

for (dI) a family of integers of Z indexed by the subsets I of {0, . . . , n} which is
convex in the sense that

d∅ = 0, d{0,...,n} = r, dI + dJ ≤ dI∩J + dI∪J ,∀I, J.

Note that the term entire convex polyhedron has for us a more restrictive mean-
ing than usually. We will demonstrate:

Lemma 1.2. (i) If S is a entire convex polyhedron defined by a convex fam-
ily of integers (dI) as in the definition 1.1, we have for any subset I ⊆
{0, . . . , n}

dI = min
(x0,...,xn)∈S

{
∑
α∈I

xα}
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so that the family (dI) is uniquely determined by S.
(ii) The faces of an entire convex polyhedron are also entire convex polyhedra.
(iii) Any entire convex polyhedron is generated by its integer points so that it

can be identified with the finite subset of these.
(iv) If we call “generating family” to be any family of n+ 1 integer points that

generates the lattice of integer points, any entire tile contains at least one
“generating family”.

(v) A tile which admits a tiling constituted of entire tiles is itself entire.

Of course, we will call an “entire tiling” of an entire tile to be a tiling of the tile
which all the tiles are themselves entire.

In the real vector space of finite dimension of functions Sr,n → R, let Cr,n be the
cone of functions v : Sr,n → R such that for any affine map l : Sr,n → R satisfying
l ≤ v, the set

{s ∈ Sr,n | l(s) = v(s)}
is an entire convex polyhedron.

And if S is an entire tiling of Sr,n, let Cr,n
S be the convex cone of functions

v : Sr,n → R such that for any tile S of S there exists an affine map lS : Sr,n → R
satisfying lS ≤ v and

S = {s ∈ Sr,n | lS(s) = v(s)}.
Those of the entire tilings S of Sr,n for which Cr,n

S is not empty will be called

the “convex entire tilings” of Sr,n. We remark that if ∅ denotes the trivial tiling of
Sr,n, then Cr,n

∅ is the subspace of affine functions Sr,n → R.
We will prove:

Proposition 1.3. (i) The cone Cr,n is the disjoint union of convex cones Cr,n
S

with S describing the set of convex entire tilings of Sr,n.

(ii) For any S, the closure Cr,n
S of Cr,n is the disjoint union of Cr,n

S′ with S′

describing the set of convex entire tilings of Sr,n more coarse than S.

In addition, Cr,n
S is a rational polyhedral convex cone (i.e. generated by

a finite number of its elements taking their values in Z) and faces of Cr,n
S

are Cr,n
S′ with S′ more coarse than S.

(iii) For S and S′ two convex entire tilings of Sr,n, the set of convex entire tilings
of Sr,n more coarse than both S and S′ has a smallest element S ∨S′. And

the intersection of Cr,n
S and Cr,n

S′ is equal to Cr,n
S∨S′ .

Let us note that in their study of Gelfand discriminants, Kapranov and Zelevin-
sky were also led to introduce certain cones of piecewise affine convex functions on
polyhedra, with the associated polyhedral decompositions (see [Loe91][Section 1])

According to Proposition 1.3, the rational polyhedral convex cones Cr,n
S /Cr,n

∅
form a fan in the quotient of the space of functions Sr,n → R by the subspaces of
affine functions. The general theory of toric variety such as shown in [Kem+73]
associates to this fan a normal toric variety Ar,n of torus Ar,n

∅ = GSr,n

m /Gn+1
m where

the torus Gn+1
m is embedded in the torus GSr,n

m by

(λ0, . . . , λn) 7→ (λ0λ
−i1
1 · · ·λ−in

n )(i0,...,in)∈Sr,n .

The orbits in Ar,n are locally closed subschemes indexed naturally by the convex
entire tilings S of Sr,n; we denote AS . Each has a marked point αS . The closure of
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an orbit AS is the union of AS′ for S′ refining S, and union of AS′ for S′ coarser
than S is the smallest invariant open subset containing AS .

We can therefore call Ar,n the “scheme of convex entire tilings” of Sr,n. When
n = 1, the convex entire tilings of Sr,1 are the partitions of the interval {0, . . . , r}
and the toric variety Ar,1 of torus Gr+1

m /G2
m

∼= Gr−1
m is identified with the affine

space Ar−1 of dimension r − 1. When n = 2, the convex entire tiling of Sr,2

constitutes of minimal equilateral triangles is finer than all the others so that the
scheme Ar,2 is affine; it is smooth if r = 2 but it is not smooth if r ≥ 3. When
n ≥ 3 finally, there are more than one minimal convex entire tilings of Sr,n and the
scheme Ar,n is not affine; it is smooth if r = 2 but it is not smooth if r ≥ 3.

1.2 Construction by schematic closure

Let’s make the product GLn+1
r of n+1 copies of linear group GLr of rank r act

on the sum (Ar)n+1 of n+1 copies of vector spaces Ar of dimension r and thus also
on the exterior power Λr(Ar)n+1. If Ar is diagonally embedded in (Ar)n+1, ΛrAr

is identified with a line of Λr(Ar)n+1 whose stabilizer in GLn+1
r is none other than

GLr diagonally embedded. This determines a locally closed immersion

GLn+1
r /GLr ↪→ P

(
Λr(Ar)n+1

)
.

Its image has a closure the Grassmannian Grr,n classifying the subspaces of di-
mension r in (Ar)n+1; it is identified with the open subset of subspaces whose
projections on each of n+ 1 factors Ar is isomorphism.

If we write the decomposition

Λr(Ar)n+1 =
⊕

(i0,...,in)∈Sr,n

Λi0Ar ⊗ · · · ⊗ ΛinAr

where
Sr,n = {(i0, . . . , in) ∈ Nn+1 | i0 + · · ·+ in = r},

this image is also the open subset of subspaces of which none of the components in
the factors

Λi0Ar ⊗ · · · ⊗ ΛinAr

vanish. So we have a morphism

GLn+1
r /GLr →

∏
(i0,...,in)∈Sr,n

P(Λi0Ar ⊗ · · · ⊗ ΛinAr)

which is factorized through a locally closed immersion

PGLn+1
r /PGLr ↪→

∏
(i0,...,in)∈Sr,n

P(Λi0Ar ⊗ · · · ⊗ ΛinAr).

Embed GLr ×Gn+1
m in GLn+1

r ×GSr,n

m by

(g;λ0, . . . , λn) 7→
(
g;λ1g, . . . , λng;

(
λ0(det g)

−1λ−i1
1 · · ·λ−in

n

)
(i0,...,in)∈Sr,n

)
,

this immersion also appears as the quotient by the torus GSr,n

m /Gm of the locally
closed immersion

(GLn+1
r ×GSr,n

m )/(GLr ×Gn+1
m ) ↪→ Gm\

∏
(i0,...,in)∈Sr,n

[
(Λi0Ar ⊗ · · · ⊗ ΛinAr)− {0}

]
(
g0, . . . , gn; (λi0,...,in)

)
7→

(
λi0,...,in · Λi0(tg0) ∨ · · · ∨ Λin(tgn)

)
(i0,...,in)∈Sr,n
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where

λi0,...,in · Λi0(tg0) ∨ · · · ∨ Λin(tgn)

are homomorphisms

Λi0Ar ⊗ · · · ⊗ ΛinAr → Λi0Ar ∧ · · · ∧ ΛinAr = ΛrAr = A1

identified with elements of Λi0Ar ⊗ · · · ⊗ ΛinAr by means of the canonical base of
Ar.

On the other hand, we have the composite morphism

(GLn+1
r ×GSr,n

m )/(GLr ×Gn+1
m ) → GSr,n

m /Gn+1
m = Ar,n

∅ ↪→ Ar,n

with values in the scheme Ar,n of convex entire tilings of simplex Sr,n.
By making the product, we obtain a locally closed immersion

(GLn+1
r ×GSr,n

m )/(GLr ×Gn+1
m ) ↪→ Gm\

∏
(i0,...,in)∈Sr,n

[
(Λi0Ar⊗· · ·⊗ΛinAr)−{0}

]
⊗Ar,n.

We can now ask:

Definition 1.4. Let Ωr,n be the schematic closure of the image Ωr,n
∅ of

(GLn+1
r ×GSr,n

m )/(GLr ×Gn+1
m )

in

Gm\
∏

(i0,...,in)∈Sr,n

[
(Λi0Ar ⊗ · · · ⊗ ΛinAr)− {0}

]
⊗Ar,n.

And let Ω
r,n

be the quotient scheme of Ωr,n by the (free) action of torus GSr,n

m /Gm.

Of course, Ωr,n is a torsor on Ω
r,n

for the torus GSr,n

m /Gm. And on the other

hand, Ω
r,n

contains as open dense subset the quotient Ω
r,n

∅
∼= PGLn+1

r /PGLr of

Ωr,n
∅ by the free of action of torus GSr,n

m /Gm.
We will demonstrate:

Theorem 1.5. The morphism

Ωr,n → Gm\
∏

(i0,...,in)∈Sr,n

[
(Λi0Ar ⊗ · · · ⊗ ΛinAr)− {0}

]
and its quotient by the free actions of torus GSr,n

m /Gm

Ω
r,n → Gm\

∏
(i0,...,in)∈Sr,n

P(Λi0Ar ⊗ · · · ⊗ ΛinAr)

are projective.
In consequence, Ω

r,n
realizes a projective compactification of PGLn+1

r /PGLr.

When n = 1, the compactification Ω
r,1

of PGL2
r /PGLr is a particular case of

the compactification of (G×G)/G constructed by De Concini and Procesi for any
adjoint semisimple group G. On the other hand, Ωr,1 is classically known as the
scheme for “complete homomorphisms” (see for example [Lak87]). We can therefore
call Ωr,n the scheme of “n-complete homomorphisms of rank r”.

If p ≥ 1 is an integer, any map ι : {0, . . . , p} → {0, . . . , n} induces naturally an
affine map of

Sr,p = {(i0, . . . , in) ∈ Nn+1 | i0 + · · ·+ in = r}
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by

(jβ)0≤β≤p 7→
(
iα =

∑
ι(β)=α

jβ
)
0≤α≤n

;

it is an identification to a face when ι is injective and a projection when ι is surjec-
tive. For any entire tiling S of Sr,n, the functions Sr,n → R which are in the convex
cone Cr,n

S induce on Sr,p functions which are in the convex cone Cr,p
S′ associated to

entire tiling S′ of Sr,p induced by S. Thus ι induces an equivariant morphism

ι∗ : Ar,n → Ar,p.

On the other hand, for each

(jβ)0≤β≤p ∈ Sr,p

and

(iα =
∑

ι(β)=α

jβ)0≤α≤n ∈ Sr,n

its image, we have a surjective homomorphism⊗
0≤β≤p

ΛjβAr →
⊗

0≤α≤n

ΛiαAr

and by duality an injective homomorphism⊗
0≤α≤n

ΛiαAr →
⊗

0≤β≤p

ΛjβAr

so that ι induces a morphism

ι∗ : Gm\
∏

(i0,...,in)∈Sr,n

[
(Λi0Ar ⊗ · · · ⊗ ΛinAr)− {0}

]
→ Gm\

∏
(i0,...,ip)∈Sr,p

[
(Λi0Ar ⊗ · · · ⊗ ΛipAr)− {0}

]
.

And we verify immediately that the product morphism sends Ωr,n
∅ to Ωr,p

∅ via the
obvious morphism

ι∗ : (GLn+1
r ×GSr,n

m )/(GLr ×Gn+1
m ) → (GLp+1

r ×GSr,p

m )/(GLr ×Gp+1
m )

and hence induces a morphism ι∗ : Ωr,n → Ωr,p which is included in the commuta-
tive diagram:

(GLn+1
r ×GSr,n

m )/(GLr ×Gn+1
m ) �

�
//

��

Ωr,n //

��

Ar,n

��

GSr,n

m /Gn+1
m

? _oo

��

(GLp+1
r ×GSr,p

m )/(GLr ×Gp+1
m ) �

�
// Ωr,p // Ar,p GSr,p

m /Gp+1
m

? _oo

And ass ι∗ : Ωr,n → Ωr,p is equivariant, it induces finally a morphism ι∗ : Ω
r,n →

Ω
r,p

.
The family of Ωr,n [resp. of Ω

r,n
], n ≥ 1, with all these induced morphisms is a

simplicial scheme that extends the one of (GLn+1
r ×GSr,n

m )/(GLr ×Gn+1
m ) [resp. of

PGLn+1
r /PGLr which is none other than the classifier of PGLr].

For n ≥ 2 and p = 1, let us describe to iota the set of n+ 1 injections {0, 1} →
{0, . . . , n} given by

0 7→ 0, 1, . . . , n− 1, n
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and

1 7→ 1, 2, . . . , n, 0.

Then the induced morphism

Ω
r,n → (Ω

r,1
)n+1

sends PGLn+1
r /PGLr to (PGL2

r /PGLr)
n+1 ∼= PGLn+1

r in such a way that identi-
fies with

{(g0, . . . , gn) | g0g1 · · · gn = 1}.
Thus, Ω

r,n
realizes a compactification of morphism of multiplication of n elements

of PGLr.

1.3 Smoothness and modular descriptions

We will prove:

Theorem 1.6. (i) The morphism Ωr,n → Ar,n, which is equivariant under the
action of torus GSr,n

m /Gm, is surjective and smooth of relative dimension
nr2.

(ii) If ι : {0, . . . , p} → {0, . . . , n} is an injective map, the induced morphism
Ωr,n → Ωr,p ×Ar,p Ar,n, which is equivariant under the action of torus
GSr,n

m /Gm, is smooth of relative dimension (n− p)r2.

As the morphism Ωr,n → Ar,n is equivariant, we see that, for any convex entire
tiling S of Sr,n, the preimage Ωr,n

S in Ωr,n of the orbit AS in Ar,n is canonically

isomorphic to GS
m\(GSr,n

m ×Gr,n
S ) where Gr,n

S denotes the fiber of Ωr,n above marked

point αS of AS and GS
m the sub-torus of GS

m stabilizer of this point.
Of course, Ωr,n

S constitutes a stratification of Ωr,n as disjoint union of smooth

locally closed subschemes. And the closure of each stratum Ωr,n
S is the union of

Ωr,n
S′ on the set of convex entire tilings S′ refining S.

Likewise, the quotients Ω
r,n

S of Ωr,n
S by the free action of torus GSr,n

m /Gm consti-

tutes a stratification of Ω
r,n

as disjoint union of smooth locally closed subschemes.
Finally, we want to describe in modular terms the fibers Grr,nS of Ωr,n above

marked points αS of Ar,n. For this purpose, let’s denote E0, . . . , En the n + 1
factors Ar of (Ar)n+1 = E and, for any subset I of {0, . . . , n}, EI = ⊕α∈IEα.

We will start with the following lemma:

Lemma 1.7. Let F be a subspace of dimension r of E = (Ar)n+1 defined on a field
and represented by a nonzero tuple (ui0,...,in) in

Λr(Ar)n+1 =
⊕

(i0,...,in)∈Sr,n

Λi0Ar ⊗ · · · ⊗ ΛinAr.

Then the family of integers dI = dim(F ∩EI) is convex in the sense of Definition
1.1 and the subset of Sr,n

{(i0, . . . , in) | ui0,...,in ̸= 0}

is none other than the entire convex polyhedron

{(i0, . . . , in) |
∑
α∈I

iα ≥ dI , ∀ I}.
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If then S is a entire convex polyhedron of Sr,n defined by a convex family of inte-
gers dI ≥ 0, we are led to introduce the scheme Grr,nS of tuples (ui0,...,in)(i0,...,in)∈Sr,n

in

Gm\
∏

(i0,...,in)∈Sr,n

[
(Λi0Ar ⊗ · · · ⊗ ΛinAr)− {0}

]
which, completed by 0 at indexes of Sr,n − S, is in the Grassmannian Grr,n. This
is a locally closed subscheme of Grr,n and according to Lemma 1.7, it classifies the
subspaces F of dimension r in E = (Ar)n+1 such that dim(F ∩ EI) = dI , ∀ I. In
addition, when S runs through the finite set of entire convex polyhedron of Sr,n,
Grr,nS constitutes a stratification of Grr,n. These strata of the Grassmannian are
variants of those studied in the mathematical literature under the name of “thin
Schubert cells” (see for example [Gel+87]).

Let us also state:

Lemma 1.8. For S be a entire convex polyhedron of Sr,n and S′ a face of S, the
restriction (us)s∈S 7→ (us)s∈S′ induces a morphism of Grr,nS to Grr,nS′ . When S′ is
defined in S by an equation of the form∑

α∈I

iα = dI with dI = min
(i0,...,in)∈S

{∑
α∈I

iα

}
,

and in particular when S′ is a boundary of S, this morphism associates with sub-
spaces F of E which are in Grr,nS the subspaces

(F ∩ EI)⊕ F/(F ∩ EI) ⊆ EI ⊕ E/EI = E.

We will give fibers Grr,nS the following modular description:

Theorem 1.9. For any convex entire tiling S of Sr,n, the fiber Grr,nS , which is

smooth of dimension nr2, is the closed subscheme of

Gm\
∏

(i0,...,in)∈Sr,n

[
(Λi0Ar ⊗ · · · ⊗ ΛinAr)− {0}

]
of tuples (ui0,...,in)(i0,...,in)∈Sr,n such that, for any tile S of S, the restraint tuple
(ui0,...,in)(i0,...,in)∈S are in Grr,nS .

It classifies the families (FS) of subspaces of dimension r in E indexed by tiles
S of S such that:

– for any tile S of S and any subset I of {0, . . . , n},

dim(FS ∩ EI) = min
(i0,...,in)∈S

{∑
α∈I

iα

}
,

– for any tiles S, S′ of S having in common a boundary with equation∑
α∈I

iα = dI

where

dI = min
(i0,...,in)∈S

{∑
α∈I

iα

}
= max

(i0,...,in)∈S′

{∑
α∈I

iα

}
and if J = {0, . . . , n} − I,

FS ∩ EI = FS′/(FS′ ∩ EJ), FS/(FS ∩ EI) = FS′ ∩ EJ .
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Chapter 2

entire convex polyhedrons and con-
vex entire tilings

We will give here the demonstrations of the results that are used for the con-
struction of Section 1.1.

2.1 An equivalent definition of entire convex polyhedrons

Let’s start with the following lemma:

Lemma 2.1. Let (dI) be a family of integers indexed by subsets of {0, . . . , n} and
convex, with hence

d∅ = 0, d{0,...,n} = r, dI + dJ ≤ dI∩J + dI∪J ,∀I, J.
And let

S = {(x0, . . . , xn) ∈ Rn+1 |
∑

0≤α≤n

xα = r and
∑
α∈I

xα ≥ dI , ∀ I}

be the associated entire convex polyhedron.
Then, if (x0, . . . , xn) is a point of S and I, J two subsets of {0, . . . , n} such that∑

α∈I

xα = dI and
∑
α∈J

xα = dJ ,

we have
dI + dJ = dI∩J + dI∪J

and ∑
α∈I∩J

xα = dI∩J ,
∑

α∈I∪J

xα = dI∪J .

Proof. To see this, it is enough to combine the two equalities of the hypothesis with
the inequalities ∑

α∈I∪J

xα ≥ dI∪J ,
∑

α∈I∩J

xα ≥ dI∩J ,

dI + dJ ≤ dI∩J + dI∪J

and with the equality∑
α∈I

xα +
∑
α∈J

xα =
∑

α∈I∩J

xα +
∑

α∈I∪J

xα.

□

This lemma allows us to prove the necessity of the condition given by the fol-
lowing proposition:

Proposition 2.2. A convex polyhedron S of the space is entire if and only if for
any sequence

S = Sl0 , Sl0+1, . . . , Sn

constituted of convex polyhedra Sl, l0 ≤ l ≤ n, of codimension l, each of which
is a boundary of the previous one, there exists a permutation τ of {0, . . . , n}, a



INVENTION 15

permutation σ of {0, . . . , n} and integers d1, . . . , dn ∈ Z such that, for any l, l0 ≤
l ≤ n, barycentric coordinates x0, . . . , xn of points of Sl satisfying the equations:

xτ(σ(1)) + xτ(σ(1)+1) + · · ·+ xτ(n) = d1,

xτ(σ(2)) + xτ(σ(2)+1) + · · ·+ xτ(n) = d2,
...

xτ(σ(l)) + xτ(σ(l)+1) + · · ·+ xτ(n) = dl.

Proof. Let’s start by proving the necessity of this condition.
Given that

S = Sl0 , Sl0+1, . . . , Sn

be a sequence as in the statement, we can find a sequence

I1, . . . , In

of subsets of {0, . . . , n} such that the affine subspace generated by each Sl, l0 ≤ l ≤
n, is defined by the system of equations∑

α∈Im

xα = dIm , 1 ≤ m ≤ l.

And according to Lemma 2.1, we can suppose that for any m, m′ we have

Im ⊆ Im′ or Im ⊇ Im′ or Im ∩ Im′ = ∅ or Im ∪ Im′ = {0, . . . , n}.

Even if you replace Im by {0, . . . , n}− Im for certain m, 1 ≤ m ≤ n, we see that
the subspaces generated by Sl, l0 ≤ l ≤ n, are defined by systems of equations of
the form ∑

α∈Jm

xα = dm, 1 ≤ m ≤ l,

where J1, . . . , Jn is a sequence of subsets of {0, . . . , n} such that for any m, m′ we
have Jm ⊆ Jm′ or Jm′ ⊆ Jm and dm are integers. This is the form requested in the
condition of the statement.

As for the converse, we will show it at the same time with the following lemma:

Lemma 2.3. Let S be a convex polyhedron of the form

S = {(x0, . . . , xn) ∈ Rn+1 |
∑

0≤α≤n

xα = r and
∑
α∈I

xα ≥ dI , ∀ I}

where, for any subset I,

dI = min
(x0,...,xn)∈S

{∑
α∈I

xα

}
.

Then S is entire if and only if dI are elements of Z and for any subsets

I1 ⊇ I2 ⊇ I2 ⊇ · · · ⊇ Il,

three exists a point (x0, . . . , xn) of S which realizes simultaneously the minimums
of ∑

α∈I1

xα,
∑
α∈I2

xα, . . . ,
∑
α∈Il

xα.
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Proof of Lemma 2.3 and finally of Proposition 2.2. Let us first show that if the
condition of Lemma 2.3 is satisfied, S is entire. It suffices to show that for any
subsets I, J of {0, . . . , n}, we have

dI + dJ ≤ dI∩J + dI∪J .

Now there is by hypothesis a point (x0, . . . , xn) of S such that∑
α∈I∩J

xα = dI∩J ,
∑
α∈I

xα = dI ,
∑

α∈I∪J

xα = dI∪J .

We deduce as desired

dJ ≤
∑
α∈J

xα = dI∪J + dI∩J − dI .

It is obvious on the other hand that if a convex polyhedron S satisfies the con-
dition of Proposition 2.2, it has the form of Lemma 2.3 and

dI = min
(x0,...,xn)∈S

{∑
α∈I

xα

}
are integers. It only remains for us to prove that then also and for all subsets

I1 ⊇ I2 ⊇ · · · ⊇ Il,

minimums of ∑
α∈I1

xα,
∑
α∈I2

xα, . . . ,
∑
α∈Il

xα

are realized simultaneously on S.
Let us proceed by recurrence on n, assuming the result already satisfied when

the space is of dimension < n.
Let us first consider the case where S is of dimension < n. As by hypothesis S

satisfies the condition of Proposition 2.2, there exists then a non trivial partition

K1 ⨿ · · · ⨿Kk

of {0, . . . , n} and integers r1, . . . , rk of sum r1+ · · ·+ rk = r such that the subspace
generated by S is defined by equations∑

α∈K1

xα = r1,
∑
α∈K2

xα = r2, . . . ,
∑

α∈Kk

xα = rk,

and S is of the form S1 × · · · × Sk where S1, . . . , Sk are entire tiles in the spaces

{(xα)α∈K1
|
∑

xα = r1}, . . . , {(xα)α∈Kk
|
∑

xα = rk}.

In consequence, we can write, for 1 ≤ l′ ≤ l,

min
(xα)∈S

{ ∑
α∈Il′

xα

}
= min

(xα)∈S1

{ ∑
α∈Il′∩K1

xα

}
+ · · ·+ min

(xα)∈Sk

{ ∑
α∈Il′∩Kk

xα

}
.

The result for S can be deduced from the one already known for S1, . . . , Sk according
to the hypothesis of recurrence.

It remains to treat the case where S is of dimension n i.e. is a tile.
let’s first assume that the equation∑

α∈I1

xα = dI1
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(where dI1 = min(xα)∈S

{∑
α∈I1

xα

}
) defines a boundary of S. This one also

satisfies the condition of Proposition 2.2 and it is of the form S′×S′′ where S′ and
S′′ are two entire tiles in the spaces

{(xα)α∈I1 |
∑

xα = dI1}

and
{(xα)α/∈I1 |

∑
xα = r − dI1};

more precisely, it is defined in this hyperplane by a certain number of inequalities
of the form ∑

α∈K

xα ≥ dK

where subsets K must satisfy

K ⊆ I1 or K ⊇ I1 or K ∩ I1 = ∅ or K ∪ I1 = {0, . . . , n}.
The tile S′ is defined by those inequalities that correspond to subsets K such that
K ⊆ I1 or K ∪ I1 = {0, . . . , n}. They are of the form∑

α∈K

xα ≥ dK or
∑

α∈I1∩K

xα ≥ dI1 + dK − r

and in both cases they are already satisfied on the tile S in a whole. We deduce that
the minima on S of

∑
α∈Il′

xα, 2 ≤ l′ ≤ l, are realized on S′ × S′′ simultaneously

according to the result proved for S′ × S′′.
Let’s consider the last case where the equation∑

α∈I1

xα = dI1

defines in S a face of codimension k ≥ 2. This face is of the form

S0 ⊗ S1 ⊗ · · · ⊗ Sk

where S0, . . . , Sk are tiles in the spaces

{(xα)α∈K0 |
∑

xα = r0}, . . . , {(xα)α∈Kk
|
∑

xα = rk}

with
K0 ⨿K1 ⨿ · · · ⨿Kk

a partition of {0, . . . , n} and r0, . . . , rk integers of sum r0 + r1 + · · · + rk = r. In
addition, I1 is compatible with this partition in the sense that if we renumber we
have

I1 = K0 ⨿K1 ⨿ · · · ⨿Kk′

for certain k′ < k.
The face

S0 ⊗ S1 ⊗ · · · ⊗ Sk

is the intersection of boundaries of S that contains; this is defined by equations of
the form ∑

α∈K

xα = dK

where K is a union of certain Km and

dK =
∑

Km⊆K

rm.
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And for any m ≤ k′, we can choose among K which appear at least one K ′
m such

that Km ⊆ K ′
m; denote Bm the boundary of S that corresponds to it.

For 2 ≤ l′ ≤ l, we have certainly

min
(xα)∈S0×···×Sk

{ ∑
α∈Il′

xα

}
≥ min

(xα)∈S

{ ∑
α∈Il′

xα

}
≥

∑
0≤m≤k′

min
(xα)∈S

{ ∑
α∈Il′∩Km

xα

}
.

However, according to the already known result for boundaries of S and the hy-
pothesis of recurrence, we have for any m ≤ k′,

min
(xα)∈S

{ ∑
α∈Il′∩Km

xα

}
= min

(xα)∈Bm

{ ∑
α∈Il′∩Km

xα

}
= min

(xα)∈S0×···×Sk

{ ∑
α∈Il′∩Km

xα

}
.

As Il′ ⊆ I1, we have

min
(xα)∈S0×···×Sk

{ ∑
α∈Il′

xα

}
=

∑
0≤m≤k′

min
(xα)∈S0×···×Sk

{ ∑
α∈Il′∩Km

xα

}
.

We conclude according to the result already known for S0 × · · · × Sk.
This finishes the proofs. □

□

2.2 The properties of entire convex polyhedrons

We give here the proof of Lemma 1.2 of Section 1.1.
(i) Let then (dI) be a family of integers indexed by subsets I of {0, . . . , n} and

convex in the sense that

d∅ = 0, d{0,...,n} = r, dI + dJ ≤ dI∩J + dI∪J ,∀I, J.

We want to show by recurrence on the dimension n of the space that the asso-
ciated convex polyhedron

S = {(x0, . . . , xn) ∈ Rn+1 |
∑

0≤α≤n

xα = r and
∑
α∈I

xα ≥ dI , ∀ I}

satisfying

dI = min
(x0,...,xn)∈S

{∑
α∈I

xα

}
, ∀ I,

and in particular is not empty. This is obvious when n = 1. Suppose then that
n ≥ 2 and that this result is already verified of dimension < n.

If I is a non trivial subset of {0, . . . , n} and J its complementary, it results from
Lemma 2.1 of Section 2.1 that the intersection of S with the hyperplane

{(x0, . . . , xn) ∈ Rn+1 |
∑
α∈I

xα = dI}

is of the form S′ × S′′ where S′ and S′′ are two convex polyhedra in the spaces

{(xα)α∈I |
∑

xα = dI} and {(xα)α∈J |
∑

xα = r − dI}

defined respectively by the inequalities∑
α∈K

≥ dK , ∀ K ⊆ I
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and ∑
α∈K

xα ≥ dI∪K − dI , ∀ K ⊆ J.

Now the two families of integers (dK)K⊆I and (dI∪K −dI)K⊆J are convex. Accord-
ing to the hypothesis of recurrence S′ and S′′ are nonempty and thus

dI = min
(x0,...,xn)∈S

{∑
α∈I

xα

}
as we wanted.

(ii) That the faces of an entire convex polyhedron are still entire convex polyhedra
follows immediately from their characterization given by Proposition 2.2 of Section
2.1.

(iii) The assertion (ii) says in particular that the vertices of an entire convex
polytope are integer points. As any convex polyhedron is generated by its vertices,
we see that an entire convex polytope is generated by its integer points.

(iv) We want to prove that in any entire tile S of the space of dimension n, we
can choose n + 1 points which generated the the complete lattice of the integer
points.

Let’s choose any sequence

S = S0, S1, . . . , Sn

of faces Sl, 0 ≤ l ≤ n, of S of codimension l each of which is a boundary of the pre-
vious one. According to Proposition 2.2 of Section 2.1, there exists a permutation
τ of {0, . . . , n} and a permutation σ of {0, . . . , n} such that, for any l, 1 ≤ l ≤ n,
and denoting sn the unique point of Sn, points s of Sl satisfies the equations with
the barycentric coordinates:

(xτ(σ(1)) + xτ(σ(1)+1) + · · ·+ xτ(n))(s− sn) = 0,

(xτ(σ(2)) + xτ(σ(2)+1) + · · ·+ xτ(n))(s− sn) = 0,
...

(xτ(σ(l)) + xτ(σ(l)+1) + · · ·+ xτ(n))(s− sn) = 0.

For any l, 1 ≤ l ≤ n, we can choose in Sl−1 an integer point sl−1 such that

(xτ(σ(l)) + xτ(σ(l)+1) + · · ·+ xτ(n))(sl−1 − sn) = ±1.

Indeed, there is certainly in Sl−1 a sequence of faces

Sl−1 = S′
l−1, S′

l , . . . , S′
n−1, S′

n = Sn

each of which is a boundary of the previous one and such that each S′
l′ ∩ Sl, l ≤

l′ ≤ n, is of codimension l′ + 1. According to Proposition 2.2 of Section 2.1, S′
n−1

has a (unique) point sl−1 satisfying the above equation.
The family s0, . . . , sn answers the question asked. In fact, the matrix

(xτ(σ(l)) + xτ(σ(l)+1) + · · ·+ xτ(n))(sl′−1 − sn), 1 ≤ l, l′ ≤ n,

has its integer coefficients, zero above the diagonal and equal to ± on the diagonal.
(v) Let S be a tile of the space of dimension n which admits a tiling constituted

of a finite set {S′} of tiles. We remark that if

S = S0, S1, . . . , Sn
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is a sequence of faces of S each of which is a boundary of the previous one, then
among the tiles S′ of tiling, there is one for which the sequence

S′ = S′ ∩ S0, S′ ∩ S1, . . . , S′ ∩ Sn

is constituted of faces of S′ each of which is a boundary of the previous one.
It is thus resulted from Proposition 2.2 of Section 2.1 that if the elements of

tiling {S′} of S are entire, S is also entire.
This finishes the proof of Lemma 1.2 of Section 1.1.

2.3 The properties of cones of convex functions on the sim-
plex

We give here the demonstration of Proposition 1.3 of Section 1.1.
(i) According to Lemma 1.2(ii) of Section 1.1, the faces of any entire tile of Sr,n

are entire convex polyhedra. From this it follows immediately that all convex cones
CP
S r, n are contained in the cone Cr,n.
Conversely, consider v : Sr,n → R a function which is in the cone Cr,n.
For any subset S of Sr,n, denote S the convex polyhedron of

Rr,n = {(x0, . . . , xn) ∈ Rn+1 | x0 + · · ·+ xn = r}
that it generates, and for any affine map l : Sr,n → R, denote l : Sr,n → R the
unique affine map which extends it.

Let’s have l describe the set {l} of affine maps Sr,n → R satisfying l ≤ v. Then
v = supl∈{l}{l} is a convex application Sr,n → R which is written as the upper

bound of a finite set of affine maps and which satisfies v(s) ≤ v(s), ∀ s ∈ Sr,n.
There exists a unique tiling X of Sr,n such that at any tile X of X is attached an
affine map lX : Sr,n → R satisfying lX ≤ v and

X = {x ∈ Sr,n | lX(x) = v(x)}.
In addition, any such tile X is generated as convex polyhedron by its finite subset

S = {s ∈ Sr,n | lX(s) = v(s)}.
But since the function v is by hypothesis in the cone Cr,n, we see that S is an entire
tile of Sr,n and X = S.

Then the set of these entire tiles S constitutes the unique entire tiling S of Sr,n

such that the convex cone Cr,n
S contains v.

(ii) For any convex entire tiling S of Sr,n, the closure Cr,n
S of convex cone Cr,n

S is

the set of functions v : Sr,n → R such that for any tile S of S there exists an affine
map lS : Sr,n → R satisfying lS ≤ v and

S ⊆ {s ∈ Sr,n | lS(s) = v(s)}.
For v a such function and S a tile of S, the set

{s ∈ Sr,n | lS(s) = v(s)}
is the trace of a tile of Sr,n which is a union of tiles of S; according to Lemma

1.2(v) of Section 1.1, this is an entire tile. This proves that Cr,n
S is the (disjoint)

union of Cr,n
S with S′ describing the set of entire tilings coarser than S.

In order to show that Cr,n
S is a rational polyhedral convex cone, it suffice to see

that it is defined by a finite number of equations and of linear inequalities with
coefficients in Z. For this, let’s choose in each tile S of S a generating family
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s0, . . . , sn (it exists according to Lemma 1.2(iv) of Section 1.1). Any point s of Sr,n

is written in a unique way as the barycenter of s0, . . . , sn with integer coefficients

j0, . . . , jn of total weight j0 + j1 + · · · + jn = 1. Then the cone Cr,n
S is defined in

the space of functions v : Sr,n → R by the finite set of equations and inequalities
of the form

v(s) = j0v(s0) + j1v(s1) + · · ·+ jnv(sn)

if s is in the same tile S as s0, . . . , sn, and

v(s) ≥ j0v(s0) + j1v(s1) + · · ·+ jnv(sn)

in the general case.

As Cr,n
S is the disjoint union of Cr,n

S′ with ulS′ more coarse than S, it is obvious

now that the faces of Cr,n
S are Cr,n

S′ .

(iii) Consider than S and S′ two convex entire tilings of Sr,n and S1, . . . , Sk

the finite family of convex entire tilings more coarse than both S and S′. The
intersection S ∨ S′ of these is a tiling of Sr,n whose tiles are union of tiles of S or
also of S′. Again according to Lemma 1.2(v) of Section 1.1, these tiles are integers
and S∨S′ is an entire tiling of Sr,n. Finally, if we choose functions v1, . . . , vk in the
convex cones Cr,n

S1
, ..., Cr,n

Sk
, the function v1 + · · · + vk is in the convex cone Cr,n

S∨S′

which thus is not empty and S ∨ S′ is a convex entire tiling as we wanted.
This finishes the proof of Proposition 1.3 of Section 1.1.
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Chapter 3

Stratification of the Grassmannian
and schemes of glued graphs
3.1 The entire convex polyhedron attached to a graph. The

restrictions to boundaries

We demonstrate here the results needed to define and interpret in modular terms
the strata Grr,nS of the Grassmannian Grr,n associated to entire convex polyhedra
S of Sr,n as well as morphisms Grr,nS → Grr,nS′ of restriction to boundaries.

Proof of Lemma 1.7 of Section 1.3. Let then F be a subspace of dimension r of
(Ar)n+1 = E = E0 ⊕ · · · ⊕ En. For any subset I of {0, . . . , n}, we denote dI the
dimension of the intersection of F with

EI =
⊕
α∈I

Eα.

Of course, we have d∅ = 0, d{0,...,n} = r and for all subsets I, J , the subspaces
F ∩EI and F ∩EJ are contained in F ∩EI∪J and have for intersection F ∩EI∩J

so that

dI + dJ − dI∩J ≤ dI∪J .

Thus, the family (dI) is convex.
If u = (ui0,...,in) is a direction vector of the line that represents F in the space

ΛrE =
⊕

(i0,...,in)∈Sr,n

Λi0E0 ⊗ · · · ⊗ ΛinEn,

we need to show that a tuple (i0, . . . , in) ∈ Sr,n satisfying ui0,...,in ̸= 0 if and only
if ∑

α∈I

iα ≥ dI , ∀ I.

Now, for any subset I of {0, . . . , n}, we have a canonical isomorphism

ΛrF ∼= ΛdI (F ∩ EI)⊗ Λr−dI (F/F ∩ EI),

from which it results

dI = min

{∑
α∈I

iα | ui0,...,in ̸= 0

}
.

It suffices thus to prove that if (j0, . . . , jn) is a tuple of Sr,n such that uj0,...,jn = 0,
there exists a subset I of {0, . . . , n} such that∑

α∈I

iα ≥
∑
α∈I

Jα =⇒ uj0,...,jn = 0.

Let us choose r basis vectors of F . By decomposing them into a base of E union
of bases of E0, . . . , En, we obtain n+ 1 sets of r line vectors lα1 , . . . , l

α
r , 0 ≤ α ≤ n,

which are of r-tuples of scalars. By hypothesis, each time you choose j0 vectors
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among l01, . . . , l
0
r , j1 vectors among l11, . . . , l

1
r , ..., jn vectors among ln1 , . . . , l

n
r , the

determinant of the matrix thus formed is 0.
Choose n + 1 integers j′0, . . . , j

′
n satisfying 0 ≤ j′0 ≤ j0, 0 ≤ j′1 ≤ j1, ..., 0 ≤

j′n ≤ jn, not all null, such that each time we take j′0 vectors among l01, . . . , l
0
r , j

′
1

vectors among l11, . . . , l
1
r , ..., j

′
n vectors among ln1 , . . . , l

n
r , the space generated by

these j′0 + j′1 + · · ·+ j′n vectors is of dimension ≤ j′0 + j′1 + · · ·+ j′n − 1, and which
are minimal for this property. In other words, for all integers k0, . . . , kn satisfying
0 ≤ k0 ≤ j′0, 0 ≤ k1 ≤ j′1, ..., 0 ≤ kn ≤ j′n and k0+k1+ · · ·+kn = j′0j

′
1+ · · ·+j′n−1,

it is possible to choose k0 vectors among l01, . . . , l
0
r , k1 vectors among l11, . . . , l

1
r , ...,

kn vectors among ln1 , . . . , l
n
r , such that the space generated by these k0+k1+· · ·+kn

vectors is of dimension k0 + k1 + · · ·+ kn. It is then easy to satisfy that the space
generated by such vectors is independent of the choice of k0, . . . , kn and of these
vectors.

This means that if I denotes the nonempty subset of {0, . . . , n} composed of α
such that j′α ≥ 1, then the space generated by all vectors lα1 , . . . , l

α
r , α ∈ I, is of

dimension j′0 + j′1 + · · ·+ j′n − 1.
In consequence, we have for any tuple (i0, . . . , in) of S

r,n the implication∑
α∈I

iα ≥
∑
α∈I

j′α =⇒ ui0,...,in = 0

and all the more so ∑
α∈I

iα ≥
∑
α∈I

jα =⇒ ui0,...,in = 0.

That’s what we wanted. □

Proof of Lemma 1.8 of Section 1.3. Let then S be a entire convex polyhedron of
Sr,n and S′ a face of S which is defined in S by an equation of the form∑

α∈I

iα = dI with dI = min
(i0,...,in)∈S

{∑
α∈I

iα

}
.

This is particularly the case if S′ is a boundary of S.
All subspaces F of E which are in Grr,nS have with EI an intersection of fixed

dimension dI . We therefore have on Grr,nS of a well-defined morphism

F 7→ (F ∩ EI)⊕ F/(F ∩ EI) ⊆ EI ⊕ E/EI = E.

It follows from the definitions and Lemma 2.1 Section 2.1 that this morphism sends
Grr,nS to Grr,nS′ . And we deduce from the canonical isomorphisms

ΛrF ∼= ΛdI (F ∩ EI)⊗ Λr−dI (F/F ∩ EI)

that it is induced by the restriction

(us)s∈S 7→ (us)s∈S′ .

Finally, for S′ any face of S, there exists a sequence

S = S0, S1, . . . , Sk = S′

of faces of S ranging from S to S′ and each of which is a boundary of the previous
one. Then the restriction (us)s∈S 7→ (us)s∈S′ is written as a composite of restric-
tions at the boundaries; according to what we have already seen, it sends Grr,nS to
Grr,nS′ . □
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For S a family of entire convex tiling of Sr,n such that the intersection of any
two of them either a face of each of the two, or Grr,nS the closed subscheme of

Gm\
∏

(i0,...,in)∈∪S∈SS

[
(Λi0Ar ⊗ · · · ⊗ ΛinAr)− {0}

]
of tuples (ui0,...,in) such that, for any element S of S, the restraint tuple

(ui0,...,in)(i0,...,in)∈S

is in Grr,nS . When S is a convex entire tiling of Sr,n and as announced in Section
1.3, we will show later on Grr,nS as the fiber of Ωr,n above marked point αS of the

orbit AS in Ar,n.
If S is an entire convex polyhedron in the space{

(x0, . . . , xn) ∈ Rn+1 |
∑

0≤α≤n

xα = r

}
,

denote

dSI = min
(x0,...,xn)∈S

{∑
α∈I

xα

}
the convex family of integers indexed by subsets I of {0, . . . , n} that defines it.

Then, according to Lemma 1.7 and 1.8 of Section 1.3, the schemes Grr,nS classifies

the families (FS) of subspaces of dimension r in E = E0⊕· · ·⊕En indexed by faces
of elements of S such that:

– for any S and any subset I of {0, . . . , n},

dim(FS ∩ EI) = dSI ,

– for any S and any face S′ of S defined by an equation of the form∑
α∈I

xα = dSI ,

FS′ = (FS ∩ EI)⊕ FS/(FS ∩ EI).

This leads to the introduction of the stacks Vecr,nS classifying the families (FS) of

vector spaces of dimension r indexed by faces of elements of S and equipped with
following supplementary structures:

– for any S and any subset I of {0, . . . , n}, a subspace FS
I of FS of dimension

dSI , with the condition that

FS
I ∩ FS

J = FS
I∩J , ∀ I, J,

and in particular

FS
I ⊆ FS

J

if I ⊆ J ,
– for any S and any face S′ of S defined by an equation of the form∑

α∈I

xα = dSI ,

of isomorphisms

FS′

I
∼= FS

I , FS′

J
∼= FS/FS

I ,
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where J = {0, . . . , n} − I and then FS′
= FS′

I ⊕ FS′

J , with the condition

that each FS′

K = FS′

I∩K ⊕ FS′

J∩K is transformed to FS
I∩K ⊕ FS

I∪(J∩K)/F
S
I .

We also ask that for any S and any face S′ of S, the various isomorphisms
between FS′

and a certain graduation of FS deduced from the previous
ones by composition are merged.

For any S, we then have a natural projection

Grr,nS → Vecr,nS .

3.2 Smoothness of schemes of glued graphs

Given S a convex entire tiling of Sr,n, we would like to build the scheme Grr,nS

by gluing one by one the schemes Grr,nS associated with tiles S of S. To do this, we
need to put an order relation on the set of tiles of S. Let’s do it this way:

Lemma 3.1. The set of tiles of any convex entire tiling S of Sr,n can be totally
ordered so that, for any tile S of S and any subset I ⊊ {0, . . . , n}, we have:

– if 0 ∈ I, the face of S of equation∑
α∈I

xα = dSI

is contained in the union of boundary of Sr,n of equation x0 = 0 and of
tiles S′ < S of S,

– if 0 /∈ I, the face of S of equation∑
α∈I

xα = dSI

is contained in the union of boundaries of Sr,n of equations

x1 = 0, . . . , xn = 0

and of tiles S′ > S of S.

Proof. By definition of convex entire tilings, there exists a convex function v on
Sr,n such that the tiles of S are the maximal entire tiles on which v is affine. If x
is a nonzero vector of the space{

(x0, . . . , xn) ∈ Rn+1 |
∑

0≤α≤n

xα = 0

}
,

we have for any tile S of S of the slope ∂v
∂x (S) in the direction x of the affine map

v restraint to S.
We can choose the vector x = (x0, . . . , xn) so that the slopes ∂v

∂x (S) are two by
two distinct and that x0 > 0, x1, . . . , xn < 0 so that for any subset I ⊊ {0, . . . , n}
we have

∑
α∈I xα > 0 if 0 ∈ I and

∑
α∈I xα < 0 if 0 /∈ I.

Then the order relation defined by

S < S′ ⇐⇒ ∂v

∂x
(S) <

∂v

∂x
(S′)

answers the question asked. □
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The convex entire tiling S of Sr,n will now be provided with such a total order
relation. We denote S0 the convex entire tiling induced by S on the boundary of
Sr,n of equation x0 = 0 identified with Sr,n−1; this is a finite set of tiles of Sr,n−1.
And for 0 ≤ k ≤ #S, we denote Sk the set of first k tiles of S and those of the tiles
of S0 which are not boundaries of these.

We have a commutative diagram

Grr,nS0

��

Grr,nS1

oo

��

· · ·oo Grr,nSk

oo

��

· · ·oo Grr,nS

��

oo

Vecr,nS0
Vecr,nS1

oo · · ·oo Vecr,nSk

oo · · ·oo Vecr,nS
oo

for which we are going to show:

Theorem 3.2. With the notations above, the stacks Vecr,nSk
, 0 ≤ k ≤ #S, are

algebraic (in the sense of Artin), smooth and equidimensional and the schemes
Grr,nSk

are smooth on Vecr,nSk
, thus smooth, and equidimensional.

In addition, for 1 ≤ k ≤ #S, the morphisms Vecr,nSk
→ Vecr,nSk

are smooth and if

S is the k-th tile of S that we have added to Sk−1 to form Sk, we have

dimGrr,nSk
−dimGrr,nSk−1

=
∑

I⊆{1,...,n}

(−1)n−#I
[
(r − dS{0})d

S
{0}∪I − dS{1,...,n}d

S
I

]
.

Proof. Proceeding by recurrence on n and k, we can assume have already shown
that Vecr,nSk−1

is algebraic, smooth and equidimensional and that Grr,nSk−1
is smooth

on Vecr,nSk−1
, thus smooth, and equidimensional. Indeed, it is obvious for Vecr,1S0

and

Grr,1S0
and on the other hand, if n ≥ 2, Vecr,nS0

and Grr,nS0
are identified with Vecr,n−1

S0

and Grr,n−1
S0

.

Let then S be the tile of S that we have added to Sk−1 to form Sk and let S′ be

the family of faces of S which is defined by equations of the form
∑

α∈I xα = dSI
with {0} ⊆ I ⊊ {0, . . . , n}.

Then the stack Vecr,nSk
is identified with 2-Cartesian product Vecr,nSk−1

×Vecr,n
S′

Vecr,nS

and the scheme Grr,nSk
with Cartesian product Grr,nSk−1

×Grr,n
S′

Grr,nS .

The stack Vecr,nS classifies the vector spaces F of dimension r equipped with a
family (FI) of subspaces of dimension dSI indexed by subsets I of {0, . . . , n} such
that, for any I, J , we have FI ∩ FJ = FI∩J and in particular FI ⊆ FJ if I ⊆ J .

And the stack Vecr,nS′ classifies the spaces F ′ of dimension r−dS{0} equipped with

subspaces F ′
I , {0} ⊆ I ⊆ {0, . . . , n}, of dimension dSI − dS{0} such that F ′

I ∩ F ′
J =

F ′
I∩J , ∀ I, J , moreover the data of spaces FI , I ⊊ {0, . . . , n}, of dimension dSI and

of a coherent system of inclusions FI ↪→ FJ , I ⊆ J , with FI∩FJ = FI∩J , I, J ⊆ K,
and of isomorphisms FI/F{0} ∼= F ′

I , {0} ⊆ I ⊊ {0, . . . , n}.
The morphism Vecr,nS → Vecr,nS′ consists of associating to spaces F equipped

with FI , I ⊆ {0, . . . , n}, the spaces F ′ = F/F{0} equipped with F ′
I = FI/F{0},

{0} ⊆ I ⊆ {0, . . . , n}, moreover the sub-families (FI)I⊊{0,...,n}.
Let again Homr,n

S the stack classifying the families composed of a subspace F{0}
of E0 of dimension dS{0}, of a space F ′ of dimension r−dS{0} equipped with subspaces

F ′
I , {0} ⊆ I ⊆ {0, . . . , n}, as above and of a homomorphism u : F ′ → E0/F{0} such
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that for any I ⊆ {0, . . . , n}, dim(Keru ∩ F ′
{0}∪I) = dSI . By associating with any

such family the space F = Ker(E0 ⊕ F ′ → E0/F{0}) equipped with subspaces

FI = Ker(E0 ⊕ F ′
I → E0/F{0}), {0} ⊆ I ⊆ {0, . . . , n}

and

FI = Keru ∩ F ′
{0}∪I , I ⊆ {1, . . . , n},

we defines a morphism Homr,n
S → Vecr,nS .

Likewise, let Homr,n
S′ the stack classifying the families composed of a subspace

F{0} of E0 of dimension dS{0}, of a space F ′ of dimension r − dS{0} equipped with

subspaces

F ′
I , {0} ⊆ I ⊆ {0, . . . , n}

as above and of homomorphisms

uI : F ′
{0}∪I → E0/F{0}, I ⊊ {0, . . . , n},

whose kernels are of dimensions dSI and which are compatible with the inclusions
F ′
{0}∪I ⊆ F ′

{0}∪J , I ⊆ J . Here again we have a morphism Homr,n
S′ → Vecr,nS′ .

To restrict to F ′
{0}∪I , I ⊊ {0, . . . , n}, the homomorphisms u : F ′ → E0/F{0}

defines a morphism Homr,n
S → Homr,n

S′ above Vecr,nS → Vecr,nS′ .

Remark that the data of a subspace F of E = E0⊕· · ·⊕En is equivalent to those
of subspaces F ∩E0 of E0 and F/(F ∩E0) of E1⊕· · ·⊕En and of a homomorphism
j : F/(F ∩ E0) → E0/(F ∩ E0). Then we have natural morphisms

Grr,nS → Homr,n
S

and Grr,nS′ → Homr,n
S′ and Grr,nS is identified with Grr,nS′ ×Homr,n

S′
Homr,n

S .

In sequence, Grr,nSk
is identified with Grr,nSk−1

×Homr,n

S′
Homr,n

S and we are led to

prove the following lemma:

Lemma 3.3. With these notations, we have:

(i) The stacks Vecr,nS′ and Vecr,nS are algebraic, smooth and equidimensional

and the morphism Vecr,nS → Vecr,nS′ is smooth.

(ii) The schemes Homr,n
S′ and Homr,n

S are smooth on Vecr,nS′ and Vecr,nS , thus

smooth, and equidimensional. In addition,

dimHomr,n
S −dimHomr,n

S′ =
∑

I⊆{1,...,n}

(−1)n−#I

[
(r − dS{0})d

S
{0}∪I − dS{1,...,n}d

S
I

]
.

(iii) The morphism

Grr,nSk−1
→ Homr,n

S′ ×Vecr,n
S′

Vecr,nSk−1

is smooth.

Proof of Lemma 3.3. (i) Let us proceed by recurrence on the dimension n. First,
let’s build the stack Vecr,nS′ . By hypothesis of recurrence, the stack of spaces F ′ of

dimension r − dS{0} equipped with

F ′
I , {0} ⊆ I ⊆ {0, . . . , n}



28 L. LAFFORGUE

is algebraic, smooth and equidimensional. It is the same, for {0} ⊆ I ⊆ {0, . . . , n}
and #I = n, of stack of spaces FI of dimension dSI equipped with subspaces FI,K ,
K ⊆ I, of dimensions dSK such that

FI,K ∩ FI,L = FI,K∩L, ∀ K,L ⊆ I.

Now the stack Vecr,nS′ is representable on the product of these stacks as that of

families of isomorphisms

FI,K
∼= FJ,K , {0} ⊆ I, J ⊊ {0, . . . , n}, #I = #J = n, K ⊆ I ∩ J

and

FI,K/FI,{0} ∼= F ′
K , {0} ⊆ K ⊆ I ⊊ {0, . . . , n}, #I = n,

compatible with each other and with the different inclusions. It is therefore alge-
braic, smooth and equidimensional.

Let’s see now the morphism Vecr,nS → Vecr,nS′ . To reconstitute the space F with

FI , I ⊆ {0, . . . , n}, choose F of dimension r and an embedding F{0} ↪→ F and an
isomorphism F/F{0} ∼= F ′ then embeddings

FI ↪→ F, {0} ⊆ I ⊊ {0, . . . , n}, #I = n,

which lifts FI/F{0} ∼= F ′
I ↪→ F ′ and that are compatible. We see that the stack

Vecr,nS is algebraic, smooth on Vecr,nS′ , thus smooth, and equidimensional.

(ii) Above Vecr,nS′ , the stack Homr,n
S′ is is that of the embeddings F{0} ↪→ E0

and of homomorphisms uI : F ′
{0}∪I → E0/F{0}, I ⊊ {1, . . . , n}, of kernel of FI ↪→

F{0}∪I/F{0} ∼= F ′
{0}∪I and compatible with each other.

Likewise, above Vecr,nS , the stack Homr,n
S is that of the embeddings F{0} ↪→ E0

and of homomorphisms u : F/F{0} → E0/F{0} pf kernel F{1,...,n} ↪→ F/F{0}.
Thus, Homr,n

S′ and Homr,n
S are smooth on Vecr,nS′ and Vecr,nS , thus smooth, and

equidimensional. More precisely, let’s see how to go from Homr,n
S′ to Homr,n

S . We

must first choose a homomorphism u : F/F{0} → E0/F{0} of rank r − dS{0} −
dS{1,...,n},hence a difference in dimensions equal to

(r−dS{0}−dS{1,...,n})
(
2(r−dS{0})−(r−dS{0}−dS{1,...,n})

)
= r2−2rdS{0}+(dS{0})

2−(dS{1,...,n})
2.

Then it is necessary to impose that for any I ⊊ {0, . . . , n} we have KeruI ⊆ Keru,
hence a new difference in dimensions∑

I⊊{0,...,n}

(−1)n−#I(r − dS{0} − dS{1,...,n})d
S
I .

Finally, it is necessary to impose that for any I ⊊ {1, . . . , n}, uI coincides with u
on F ′

{0}∪I/KeruI , hence a final difference in dimensions∑
I⊊{1,...,n}

(−1)n−#I(r − dS{0})(d
S
{0}∪I − dS{0} − dSI ).

The total dimensional difference is therefore∑
I⊆{1,...,n}

(−1)n−#I

[
(r − dS{0})d

S
{0}∪I − (r − dS{0})d

S
{0} − dS{1,...,n}d

S
I

]
.
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which is the announced formula since∑
I⊆{1,...,n}

(−1)n−#I = 0.

(iii) Since Homr,n
S′ is smooth on Vecr,nS′ , the fiber bundle product Homr,n

S′ ×Vecr,n
S′

Vecr,nSk−1

is smooth on Vecr,nSk−1
just like Grr,nSk−1

. It suffices then to show that the morphisms

induced by

Grr,nSk−1
→ Homr,n

S′ ×Vecr,n
S′

Vecr,nSk−1

above geometric points of Vecr,nSk−1
are smooth. Now this is clear since they are

restrictions to open subsets of certain projections between affine spaces. □

Final proof of Theorem 3.2. Given the recurrence assumption on Vecr,nSk−1
and Grr,nSk−1

,

Theorem 3.2 is deduced from Lemma 3.3 according to the identification

Vecr,nSk
= Vecr,nSk−1

×Vecr,n
S′

Vecr,nS

and

Grr,nSk
= Grr,nSk−1

×Homr,n

S′
Homr,n

S

and the factorization of morphism

Grr,nSk
→ Vecr,nSk

into

Homr,n
S ×Vecr,n

S′
Vecr,nSk−1

→ Vecr,nSk
.

□

□

3.3 Calculation of the dimension

Let us first introduce a convenient notation. If S is a entire convex polyhedron
in the space

{(x0, . . . , xn) ∈ Rn+1 |
∑

0≤α≤n

xα = r}

defined by the convex family of integers

(dSI = min
(x0,...,xn)∈S

{∑
α∈I

xα

}
)I⊆{0,...,n},

we put

dS =
∑

I⊆{0,...,n}

(−1)n+1−#IdSI .

Let’s start with the following lemma:

Lemma 3.4. For S a entire convex polyhedron which is not a tile i.e. having
codimension ≥ 1, we have

dS =
∑

I⊆{0,...,n}

(−1)n+1−#IdSI = 0.
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Proof. By hypothesis there exists a partition of {0, . . . , n} into two nontrivial sub-
sets J and K such that

r = dS{0,...,n} = dSJ + dSK

and ∑
α∈J

xα = dSJ ,
∑
α∈K

xα = dSK , ∀ (x0, . . . , xn) ∈ S.

Then we deduce from Lemma 2.1 of Section 2.1 that for any subset I of {0, . . . , n},
we have

dSI = dSI∩J + dSI∩K

in addition

#I = #(I ∩ J) + #(I ∩K).

We obtain by consequence

dS = (−1)n+1
∑
I′⊆J

∑
I′′⊆K

(−1)#I′+#I′′
(dSI′ + dSI′′)

= (−1)n+1
∑
I′⊆J

(−1)#I′
dSI′

∑
I′′⊆K

(−1)#I′′

+ (−1)n+1
∑

I′′⊆K

(−1)#I′′
dSI′′

∑
I′⊆J

(−1)#I′

which is zero as announced. □

If S is a entire convex polyhedron in the space

{(x0, . . . , xn) ∈ Rn+1 |
∑

0≤α≤n

xα = r}

associated with a convex family of integers (dSI ), we denote S0 and S0 the entier
convex polyhedra of spaces

{(x1, . . . , xn) ∈ Rn |
∑

1≤α≤n

xα = r − dS{0}}

and

{(x1, . . . , xn) ∈ Rn |
∑

1≤α≤n

xα = dS{1,...,n}}

defined by

(x1, . . . , xn) ∈ S0 ⇐⇒ (dS{0}, x1, . . . , xn) ∈ S,

and

x1, . . . , xn) ∈ S0 ⇐⇒ (r − dS{1,...,n}, x1, . . . , xn) ∈ S.

Lemma 3.5. For S a entire convex polyhedron defined by a convex family (dSI ), the
entire convex polyhedron associated to S0 and S0 are defined by the convex families

dS0

I = dS{0}∪I − dS{0}, I ⊆ {1, . . . , n}

and

dS
0

I = dSI , I ⊆ {1, . . . , n}.
In particular, we have

dS = dS0 − dS
0

.
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Proof. The first assertion is resulted from Lemma 2.3 of Section 2.1. It leads to the
second according to the definitions and the formula∑

I⊆{1,...,n}

(−1)#I = 0.

□

From Lemma 3.4 and 3.5 we deduce that the invariants dS attached to entier
convex polyhedra S are additive.

Proposition 3.6. Let S be a convex entire tiling of simplex Sr,n. Then if S runs
through the set of tiles of S, we have∑

S

dS = dS
r,n

= r.

Proof. We proceed by recurrence on n. For n = 1, the formula expresses the
obvious fact that the sum of the lengths of any finite family of intervals constituting
a partition of [0, r] is r.

Suppose then n ≥ 2 and the formula already established in rank n− 1.
According to Lemma 3.5, we can write∑

S

dS =
∑
S

(dS0 − dS
0

)

and according to Lemma 3.4 one can remember in this sum only S0 and S0 which
are dimension n − 1. Now any face of S of dimension n − 1 is shared by two tiles
of S exactly, unless it is on a boundary of Sr,n. After simplification we obtain∑

S

dS =
∑

S, dS
{0}=0

dS0 .

Now, when S runs through the subset of tiles of S such that dS{0} = 0, S0 constitutes

the convex entire tiling of Sr,n−1 induced by that of Sr,n via the embedding

Sr,n−1 ↪→ Sr,n

(x1, . . . , xn)
7 → (0, x1, . . . , xn)

We conclude according to the hypothesis of recurrence. □

The above combined results now allow us to deduce from Theorem 3.2 of the
preceding section the corollary:

Corollary 3.7. For any convex entire tiling S of Sr,n, the scheme of glued graph
Grr,nS is smooth of constant dimension nr2.

Proof. Let S0 be the convex entire tiling induced by S on the boundary of Sr,n of

equation x0 = 0 identified with Sr,n−1. According to Theorem 3.2, Grr,n−1
S0

and

Grr,nS are smooth and equidimensional and if S runs through the set of tiles of S,

we have

dimGrr,nS − dimGrr,n−1
S0

=
∑
S

∑
I⊆{1,...,n}

(−1)n−#I

[
(r − dS{0})d

S
{0}∪I − dS{1,...,n}d

S
I

]
.
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If n = 1, it is obvious that Grr,0S0
is of dimension 0 and if n ≥ 2 we can proceed by

recurrence and suppose already proved that Grr,n−1
S0

is of dimension (n − 1)r2. It

is remained to calculate the sum on the tiles S of S above.
According to Lemma 3.5, it is still written∑

S

[
(r − dS{0})d

S0 − dS{1,...,n}d
S0

]
and according to Lemma 3.4 we can retain in this sum only the S0 and S0 which
are of dimension n − 1. And these, unless they are on the boundary of Sr,n of
equation x0 = 0, are shared by two tiles S, S′ of S exactly and which satisfy

dS{1,...,n} = r − dS
′

{0}, dS
0

= dS
′
0 .

After simplification, the sum reduces to∑
S,dS

{0}=0

rdS0 .

Now, when S runs through the subsets of tiles of S such that dS{0} = 0, S0 runs

through the entire convex tiling S0 of §r,n−1. According to Proposition 3.6, on
conclude as wanted that the sum above is equal to r2. □
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Chapter 4

The properties of schemes of n-complete
homomorphisms. Application to the
Lang’s isogeny
4.1 Projectivity of the representation morphisms

These are what we call the projections:

Ωr,n → Gm

∖ ∏
(i0,...,in)∈Sr,n

[
(Λi0Ar ⊗ · · · ⊗ ΛinAr)− {0}

]
,

Ω
r,n →

∏
(i0,...,in)∈Sr,n

P(Λi0Ar ⊗ · · · ⊗ ΛinAr).

By construction, their restrictions on open dense subsets

Ωr,n
∅

∼= (GLn+1
r ×GSr,n

m )/(GLr ×Gn+1
m )

and
Ω

r,n

∅
∼= PGLn+1

r /PGLr

are locally closed immersions, and on the other hand the second is the quotient of
the first by the free actions of torus GSr,n

m /Gm.
We will demonstrate here Theorem 1.5 of Section 1.2 which asserts that these

two morphisms are projective.
It is enough to verify that the first one is and, as we already know that it is

quasi-projective, that it satisfies the valuative criterion of properness. Thus, we
have to see that any point of

Gm

∖ ∏
(i0,...,in)∈Sr,n

[
(Λi0Ar ⊗ · · · ⊗ ΛinAr)− {0}

]
with values in a discrete valuation ring A and which generically is in Ωr,n

∅ lifts
(uniquely) at a point of Ωr,n(A).

Referring to the construction of the toric variety Ar,n, this means exactly that
if u is a point of GLn+1

r /GLr with values in a field K equipped with a discrete
valuation vK and

(ui0,...,in)(i0,...,in)∈Sr,n

a tuple which is the representation in∏
(i0,...,in)∈Sr,n

[
(Λi0Ar ⊗ · · · ⊗ ΛinAr)− {0}

]
,

then the map v : Sr,n → Z which to any index (i0, . . . , in) ∈ Sr,n associates the
minimum of valuations of coordinates of ui0,...,in ∈ (Λi0Ar ⊗ · · · ⊗ ΛinAr) − {0}
must be in the cone Cr,n. In other words, we must show that for any affine map
l : Sr,n → R satisfying l ≤ v, the set

{s ∈ Sr,n | l(s) = v(s)}
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is an entire convex polyhedron as long as it is not empty.
As v takes its values in Z, we can suppose that l takes his values in Q and also in

Z, if we replace the defining field K of u by a sufficiently ramified finite extension.
In these conditions, there exists an element λ = (λ0, . . . , λn) ∈ (K×)n+1 whose
image

(λi0,...,in = λ0λ
−i1
1 · · ·λ−in

n )(i0,...,in)∈Sr,n

in (K×)S
r,n

satisfies

l(i0, . . . , in) = vK(λi0,...,in), ∀ (i0, . . . , in) ∈ Sr,n.

Then the tuple

(λ−1
i0,...,in

ui0,...,in)(i0,...,in)∈Sr,n

defines a point of scheme

(
∏

(i0,...,in)∈Sr,n

Λi0Ar ⊗ · · · ⊗ ΛinAr)− {0}

with values in the valuation ring A of K and it represents the unique point of
Grr,n(A) which extends the point λ−1u ∈ (GLn+1

r /GLr)(K). We conclude accord-
ing to Lemma 1.7 of Section 1.3.

4.2 Smoothness of stratification morphism. Identification of
its fibers

Here we want to prove Theorem 1.6(i) and Theorem 1.9 of Section 1.3.
For any convex entire tiling S of Sr,n, we have already constructed the closed

subscheme Grr,nS of

Gm

∖ ∏
(i0,...,in)∈Sr,n

[
(Λi0Ar ⊗ · · · ⊗ ΛinAr)− {0}

]
which is smooth of dimension nr2 and admits the modular characterization of
Theorem 1.9 of Section 1.3. We remark that the sub-torus GS

m of GSr,n

m stabilizer
of marked point αS of the orbit AS in Ar,n preserves Grr,nS ; this results from the

fact that for any tile S of S, the morphism GS
m ↪→ GSr,n

m → GS
m is factored through

Gn+1
m ↪→ GSr,n

m → GS
m. If in consequence we send Grr,nS to αS , we define a locally

closed immersion of GS
m\(GSr,n

m ×Grr,nS ) in

Gm

∖ ∏
(i0,...,in)∈Sr,n

[
(Λi0Ar ⊗ · · · ⊗ ΛinAr)− {0}

]
×Ar,n.

Lemma 4.1. Let A be a integral local ring and

SpecA → Gm

∖ ∏
(i0,...,in)∈Sr,n

[
(Λi0Ar ⊗ · · · ⊗ ΛinAr)− {0}

]
×Ar,n

be a morphism which generically is factored through GS
m\(GSr,n

m ×Grr,nS ).

We suppose that the closed point of SpecA is sent in Ar,n to a marked point
αS′ associated to a convex entire tiling S′ which necessarily refining S, so that the
preimage of αS′ in SpecA is a closed subset defined by an ideal I of A.

Then Spec(A/I) is sent in the closed subscheme Grr,nS′ .
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Proof. Denote K the fraction field of A. As the exact sequence

1 → GS
m → GSr,n

m → GSr,n

m /GS
m → 1

is split, the induced point

SpecK → Gm

∖ ∏
(i0,...,in)∈Sr,n

[
(Λi0Ar ⊗ · · · ⊗ ΛinAr)− {0}

]
can can be represented by a tuple of the form (ui0,...,in) = (λi0,...,ingi0,...,in) where
λi0,...,in are scalars in K× and gi0,...,in are elements of

(Λi0Kr ⊗ · · · ⊗ ΛinKr)− {0}

which defines an element of Grr,nS (K). And as this point extends to SpecA, we

can also suppose (by imposing, for example ur,0,...,0 = 1) that each ui0,...,in has
coefficients in A, at least one being invertible.

Let then S′ be a tile of S′ and S the tile of S which contains it. According
to Lemma 1.2(iv) of Section 1.1, S′ contains a generating family. If we modify
tuples (λs)s∈Sr,n and (gs)s∈Sr,n by an element of (K×)n+1 ⊂ (K×)S

r,n

, we can
suppose that λs = 1 in the s of chosen generating family. By construction of
the toric variety Ar,n this means that the λ−1

s , s ∈ Sr,n, are in A, that they are
congruent to 1 modulo I when s ∈ S′ and they are in I when s ∈ Sr,n − S′.
In consequence, the tuple

(
(us)s∈S′ , (0)s∈Sr,n−S′

)
is congruent module I on tuple(

(gs)s∈S′ , (0)s∈Sr,n−S′
)
thus defines a point with values in A/I of the stratum Grr,nS′

of the Grassmannian Grr,n.
This is true for any tile S′ of S′, we are done. □

According to Lemma 4.1, there exists a (unique) closed subscheme Ω of

Gm

∖ ∏
(i0,...,in)∈Sr,n

[
(Λi0Ar ⊗ · · · ⊗ ΛinAr)− {0}

]
×Ar,n

which is invariant by the action of torus GSr,n

m and whose fiber above each marked
point αS of Ar,n is equal to Grr,nS . Thus, all fibers of this scheme above points

of Ar,n are smooth of dimension nr2; in addition, it merges above the dense orbit
Ar,n

∅ of Ar,n with the open dense subset Ωr,n
∅ of scheme Ωr,n then it contains Ωr,n

as closed subscheme.
We will have proven Theorem 1.6 (i) and Theorem 1.9 of Section 1.1 if we proved

that this scheme ω is equal to Ωr,n and it is smooth of relative dimension nr2 above
Ar,n. But this follows from the following lemma:

Lemma 4.2. Let S be a convex entire tiling of Sr,n and u a closed point of scheme
Grr,nS .

Then there exists a locally closed subscheme of

Gm

∖ ∏
(i0,...,in)∈Sr,n

[
(Λi0Ar ⊗ · · · ⊗ ΛinAr)− {0}

]
×Ar,n,

contains u, invariant by the action of torus GSr,n

m , smooth of relative dimension
nr2 above Ar,n and whose fiber above marked point α∅ = 1 of the dense orbit
Ar,n

∅ = GSr,n

m /Gn+1
m of Ar,n is an open subset of Grr,n∅ = GLn+1

r /GLr.
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Proof. Let SpecA be the affine scheme projective limit of affine open subschemes
of

Gm

∖ ∏
(i0,...,in)∈Sr,n

[
(Λi0Ar ⊗ · · · ⊗ ΛinAr)− {0}

]
×Ar,n

which contains u and are invariant by the action of torus GSr,n

m . Thus A is an
integral ring whose field of fractions is identified with the field of functions of

Gm\
(
Λr(Ar)n+1 − {0}

)
×Ar,n;

it is invariant by the action of GSr,n

m and its finished points on Ar,n are the trans-
forms of u by this action.

Let I be the ideal of A which defines the closed subscheme of SpecA induced by
Ω. This ideal is generated by the subset I of its elements on which GSr,n

m acts by
a character.

Recall on the other hand that the point u consists of a family of closed points
uS in stratum Grr,nS of the Grassmannian Grr,n. where S runs through the finite
set of tiles of S and of their faces. Any point g of the fiber of SpecA/I above α∅ is
a point of Grr,n∅ ; by construction of A, its orbit under the action of GSr,n

m contains

in its closure the point u, and thus g, as a point of Grr,n∅ ↪→ Grr,n, contains in its
closure at least one of the points uS . The ideal I is again defined by the subset I ′

of I of its elements which are well defined in the neighborhood of the points uS .
The codimension in

Gm\
(
Λr(Ar)n+1 − {0}

)
of smooth schemes Grr,n and Grr,nS is equal to Cr

(n+1)r −1−nr2. It is thus possible

to choose Cr
(n+1)r − 1− nr2 elements in I ′ whose relative differentials on Ar,n are

linearly independent at the point u (so that it defines a closed subscheme of SpecA
which is formally smooth of relative dimension nr2 on Ar,n) and at all points uS

(so that above α∅ it generates the ideal I).
Then these Cr

(n+1)r −1−nr2 equations define in the invariant open neiborhoods

by GSr,n

m and sufficiently small of u in

Gm

∖ ∏
(i0,...,in)∈Sr,n

[
(Λi0Ar ⊗ · · · ⊗ ΛinAr)− {0}

]
×Ar,n

of closed subschemes that answer the question posed. □

4.3 Smoothness of morphisms of restrictions to faces

Let’s give proof of Theorem 1.6(ii) of Section 1.3.
By functoriality, it is sufficient to prove that if

ι : {0, . . . , n− 1} → {0, . . . , n}
is the injective map

α 7→ α+ 1,

then the induced map
Ωr,n → Ωr,n−1 ×Ar,n−1 Ar,n

is smooth of relative dimension r2.
According to Theorem 1.6(i) of Section 1.3, the schemes Ωr,n and Ωr,n−1×Ar,n−1

Ar,n are smooth of relative dimensions respectively nr2 and (n−1)r2 on Ar,n, thus
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it suffices to show that the induced morphisms between fibers above points of Ar,n

are smooth. In other words, it is necessary to see that if S is an entire convex tiling
of the simplex

Sr,n = {(i0, . . . , in) ∈ Nn+1 | i0 + · · ·+ in = r}

and S0 the induced convex entire tiling of boundary of equation i0 = 0 identified
with Sr,n−1, then the morphism of restriction to this boundary between schemes
of glued graphs Grr,nS → Grr,n−1

S0
is smooth.

Now, with the notations of Section 3.2, we have a commutative diagram

Grr,nS

��

// Grr,n−1
S0

��

Vecr,nS
// Vecr,n−1

S0

and according to Theorem 3.2 of this section, we already know that schemes Grr,nS

and Grr,n−1
S0

are smooth on the stacks Vecr,nS and Vecr,n−1
S0

and that the morphism

Vecr,nS → Vecr,n−1
S0

is smooth. Thus, we are reduced to prove that the morphism

Grr,nS → Grr,n−1
S0

×Vecr,n−1
S0

Vecr,nS

is smooth and for that the induced morphisms between fibers above the points of
Vecr,nS are smooth. Now, above a point of Vecr,nS with values in a field K, the

fibers of Grr,nS and Grr,n−1
S0

×Vecr,n−1
S0

Vecr,nS are representable by two open subsets

and two vector spaces of finite dimension on K and the morphism from one to the
other is induced by a linear map between these spaces which is surjective; indeed,
the canonical splitting of the exact sequence

0 → E0 → E → E{1,...,n} → 0

defines for it a section.
This finishes the proof of Theorem 1.6(ii) of Section 1.3 and thus of all the results

stated in Chapter 1.

4.4 Application to Lang’s isogeny

In this final section, we take for base a finite field Fq with q elements. Thus all
schemes on this base are equipped with Frobenius morphism of elevation to power
q, which we denote as τ .

We will construct a projective compactification Ω
r,τ

of PGLr equipped with two

morphisms to the compactification Ω
r,1

of PGL2
r /PGLr

∼= PGLr included in two
commutative diagrams:

g_

��

PGLr

��

� � // Ω
r,τ

g PGLr
� � // Ω

r,1
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g_

��

PGLr

��

� � // Ω
r,τ

t(g)−1 ◦ g PGLr
� � // Ω

r,1

In this sense, Ω
r,τ

will perform a compactification of the Lang isogeny g 7→ τ(g)−1◦g
in PGLr.

As in Chapter 1, we first build a toric varietyAr,τ which will serve as a parametriza-
tion scheme.

Recall that in the real vector space of functions

v : Sr,2 = {(i0, i1, i2) ∈ N3 | i0 + i1 + i2 = r} → R,

we have defined the cone Cr,2 which corresponds to the toric variety Ar,2. It is
written naturally as the disjoint union of convex cones Cr,2

S indexed by the convex

entire tilings of triangle Sr,2. Let then Cr,τ be the intersection of Cr,2 with the
subspace of functions v : Sr,2 → R such that for any i1, i2 ∈ N2, i1 + i2 = r, we
have v(0, i1, i2) = qv(i1, 0, i2). And let Cr,τ

S be the intersection convex cones of Cr,2
S

with this same subspace; we call q-convex entire tilings of Sr,2 those entire tilings
S for which Cr,τ

S is not empty. The trivial tiling ∅ of Sr,2 is q-convex and Cr,τ
∅ is the

subspace of functions of the form Sr,2 → R : (i0, i1, i2) 7→ ai0 + qai1 with a ∈ R.
Of course, Cr,τ is the disjoint union of Cr,τ

S and this satisfying the same properties

of that in Proposition 1.3 in Section 1.1. The general theory showed in [Kem+73][§2]
thus allows to associate to Cr,τ a normal toric varietyAr,τ of torusAr,τ

∅ = GSr,τ

m /Gm

where

Sr,τ = {(i0, i1, i2) ∈ N3 | i0 + i1 + i2 = r and i0 ̸= 0} ⊊ Sr,2

and Gm is embedded in the torus GSr,τ

m by λ 7→ (λi0,i1,i2 = λi0+qi1). The orbits in
Ar,τ are locally closed subschemes indexed naturally by the q-convex entire tilings
S of Sr,2; we denote it as Ar,τ

S . The closure of an orbit Ar,τ
S is the union of Ar,τ

S′

for S′ refining S.
The embedding

GSr,τ

m ↪→ GSr,2

m : (λi0,i1,i2)i0 ̸=0 7→ (λi0,i1,i2)

where λ0,i1,i2 = λq
i1,0,i2

if i1 ̸= 0 and λ0,0,r = 1 induces an embedding GSr,τ

m /Gm ↪→
GSr,2

m /G3
m which in turn extends into an equivariant closed immersion Ar,τ ↪→ Ar,2.

Each orbit Ar,τ
S in Ar,τ has a marked point which is sent by this immersion to the

marked point αS of Ar,2
S and that therefore we can again denote as αS .

The three strictly increasing maps {0, 1} → {0, 1, 2} induces three injections

Sr,1 = {(i0, i1) ∈ N2 | i0 + i1 = r} → Sr,2

(i0, i1) 7→ (0, i0, i1), (i0, 0, i1), (i0, i1, 0)

then three equivariant morphisms p0, p1, p2 : Ar,2 → Ar,1 thus that three other
p0, p1, p2 : Ωr,2 → Ωr,1 above these. And Ar,τ has been constructed in such a way
that the three morphisms p0, p1, p2 : Ar,τ → Ar,1 induced via the closed immersion
Ar,τ ↪→ Ar,2 satisfying p0 = τ ◦ p1.

Theorem 4.3. Let Ωr,τ be the closed subscheme of Ωr,2 ×Ar,2 Ar,τ defined by the
equation p0 = τ ◦ p1 in Ωr,1. Then:
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(i) The scheme Ωr,τ is equipped with a free action of torus GSr,τ

m and with two
equivariant morphisms

p1, p2 : Ωr,τ → Ωr,1

above
p1, p2 : Ar,τ → Ar,1

(ii) The morphism Ωr,τ → Ar,τ is equivariant and smooth of relative dimension
r2.

Proof. (i) is obvious.
(ii) The smoothness results from the fact that, according to Theorem 1.6 of

Section 1.3, the scheme Ωr,2 is smooth of relative dimension 2r2 on Ar,2 and the
morphism p0 : Ωr,2 → Ωr,1 ×Ar,1 Ar,2 is smooth of relative dimension r2. □

If S is a q-convex entire tiling of triangle

Sr,2 = {(i0, i1, i2) ∈ N3 | i0 + i1 + i2 = r},
we denote Grr,τS the fiber of Ωr,τ above marked point αS of the orbit Ar,τ

S in Ar,τ .

As the tiling S is q-convex, it induces the same tiling S0 on the sides of equations
i0 = 0 and i1 = 0 identified with Sr,1. Then Grr,τS is the closed subspace of

Grr,2S defined by the equation p0 = τ ◦ p1 in Grr,1S0
. Thus Grr,τS admits a modular

interpretation deduced from cells of Grr,2S , Grr,1S and p0, p1 : Grr,2S → Grr,1S .

In particular, when S is the trivial tiling ∅, Grr,1S0
= Grr,1∅ is identified with

GL2
r /GLr

∼= GLr and Grr,τS = Grr,τ∅ is identified with closed subscheme

{(g0, g1, g2) ∈ GL3
r | g1 = g0 ◦ g2 and g0 = τ(g1)}

so that p1 : (g0, g1, g2) 7→ g1 is an isomorphism and that p2 ◦p−1
1 : g1 7→ τ(g1)

−1 ◦g1
is the Lang’s isogeny.

Finally, the quotient Ω
r,τ

of Ωr,τ by the free action of torus GSr,τ

m is a closed

subscheme of Ω
r,2

thus a projective scheme. It contains PGLr as open dense subset

and it is equipped with two morphisms p1, p2 : Ω
r,2 → Ω

r,1
which realizes a com-

pactification of the Lang’s isogeny as announced at the beginning of this section.
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Erratum
In this paper, we have constructed for any rank r equivariant compactifications

Ω
r,n

of quotients PGLn+1
r /PGLr, n ≥ 1. It is equipped with natural morphisms

on “toric stacks” Ar,n/Ar,n
∅ (quotients of toric varieties Ar,n par their tori Ar,n

∅ =

GSr,n

m /Gn+1
m ) whose corresponding points of “convex entire” tilings of entire simplex

Sr,n = {(i0, . . . , in) ∈ Nn+1 | i0 + · · ·+ in = r}

and their strata i.e. their fibers above these points admit a modular description in
terms of corresponding tilings.

It was also claimed (it was Theorem 1.6 of Section 1.3) that for any rank r and

any power n ≥ 1, the morphism of structure Ω
r,n → Ar,nAr,n

∅ was smooth and that
for any injective map

ι : {0, . . . , p} → {0, . . . , n},

the induced morphism “of face”

Ω
r,n → Ω

r,p ×Ar,p/Ar,p
∅

Ar,n/Ar,n
∅

was equally smooth.
But while preparing a lecture he was giving at the Institut Henri Poincaré, the

author realized in the first days of June 2000 that his “proof” was wrong in general
and that the case n = 3, r = 4 provides a counterexample to the smoothness

statement: the projective compactification Ω
4,3

of (PGL4)
4/PGL4 is not even flat

on A4,3/A4,3
∅ . Here are the series of cases where the smoothness statement is true

and proven:

• When n = 1: this is the particular case PGL2
r /PGLr of “miraculous”

compactifications of De Concini and Procesi.
• When n = 2: this is the first work of the author in this field, it was
the subject of the pre-publication which contains a complete and correct
demonstration.

• When r=2.

All this is detailed in a text that can be found on the electronic server of the IHES
preprints (March 2001).

In the general case, the fault in the study of singularities of Ω
r,n

is located in
the “proof” of Lemma 3.3 of Section 3.2. Also false are all the general statements
of smoothness that depended on it, namely Theorem 3.2 and Lemma 3.3 of Section
3.2, Corollary 3.7 of Section 3.3, Lemma 2 of Section 4.2 and Theorem 1.6 of Section
1.3.

On the other hand, all the other statements concerning the construction of Ar,n

and Ω
r,n

and on their projective, functorial and modular properties are correct.
Let us recall finally that the author had been led to the problem of compact-

ification of PGLn+1
r /PGLr by wanting to resolve the singularities of the stacks

of Drinfeld shtuka of rank r with level structures. For arbitrary multiplicities, we
have to compactify the adiagonal powers P 2/P and P 3/P of parabolic subgroups
P , which is almost the same problem as compacting the PGLn+1

r /PGLr in general.
The author had thought to solve it in the preprint by giving a variant of his con-
structions of Ω

r,n
; Here again, the constructions and all statements of projective,
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functorial and modular properties are correct but all statements of smoothness are
false.
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Abstract. Some equivariant compactifications of the quotients PGLn+1
r /PGLr

are constructed. Each one is decomposed into locally closed strata which are
smooth, are indexed by the entier convex pavings of the simplex of dimen-

sion n and admit a modular interpretation deduced from that of the Grass-

mann varieties. Together, they form a simplicial scheme which “compacti-
fies” the classifying simplicial scheme of PGLr consisting of all the quotients

PGLn+1
r /PGLr, n ≥ 0.
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